
Progress In Electromagnetics Research M, Vol. 115, 151–162, 2023

An Optimal Sparse Reconstruction Algorithm in Synthetic Aperture
Interferometric Radiometer (SAIR)

Zilong Zhao, Zhongjian Fu, Jinguo Wang*, Zhaozhao Gao,
Jie Gu, Shiwen Li, Bo Qi, and Fan Jiang

Abstract—Synthetic aperture interferometric radiometer (SAIR) requires lots of antennas, receivers,
and correlators to accurately reconstruct the brightness temperature (BT) distribution of the scene.
Aiming to reduce the complexity of the hardware requirements in SAIR system while maintaining the
image quality, a new optimal sparse reconstruction method is developed in this paper. Different from
the existing imaging methods, the proposed method constructs the optimal receiving array with a few
elements by evaluating the mutual coherence and the array factor of the sensing matrix in SAIR system,
so as to achieve high-quality reconstruction of the BT image. Numerical simulations and experiments
demonstrate that the proposed method can reconstruct the BT image by solely using a few receivers
with higher image fidelity than the competing methods.

1. INTRODUCTION

Synthetic aperture interferometric radiometer (SAIR) has received much attention in recent years
because it offers an effective way to increase the spatial resolution by using an array composed of
small aperture antennas to synthesize a large aperture. In order to accurately recover the brightness
temperature (BT) distribution of the scene, SAIR usually requires a large number of different samples
in spatial frequency domain (called visibility samples) simultaneously to obtain as much information of
the scene as possible [1]. For example, the microwave interferometric radiometer with aperture synthesis
(MIRAS) system developed by the European space agency (ESA) contains 69 antennas, 72 receivers,
and 72 analog to digital converters (ADCs) to measure the data [2]; the GeoSTAR-III system developed
by the NASA Jet Propulsion Laboratory (JPL) employs 144 antennas, 144 receivers, and 144 ADCs
to obtain the data [3]. The high system complexity and huge amount of data limit the application of
SAIR in various domains such as remote sensing, surveillance, and military.

Aiming to solve the problem of the SAIR system with high complexity, a lot of research has been
performed. These developed methods can be classified into three categories. One is based on the passive
coding technology, one based on the clock scanning technology, and one based on the compressed
sensing (CS) sparse reconstruction technology. For example, Kpré et al. proposed a passive coding
technique to reduce the hardware cost of the SAIR system and the computation load [4–7]. However,
the passive coding technique requires an oversized microwave cavity with uncorrelated transfer functions
which will increase the volume of the SAIR system and limit the application of the SAIR in practice.
Zhang et al. proposed an clock scan microwave interferometric radiometer (CSMIR) to reduce the array
complexity [8, 9]. By rotating the sub-arrays with a small number of antennas, a complete visibility
samples can be obtained and used to recover the BT maps. However, the CSMIR requires rotation
equipment and is suitable for observing slow changing targets [9]. Li et al. proposed a CS approach
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for reconstructing the BT images with less visibility samples [10]. The feasibility of the CS method
in the SAIR system is demonstrated by simulations and experiments [10, 11]. However, the CS sparse
reconstruction method in [10, 11] randomly selects some receivers from all receivers to recover the image.
So, the imaging performance of the CS method in [10, 11] is not optimal.

The main contribution of this paper is to develop a new optimal sparse reconstruction method to
reduce the complexity of the SAIR system while maintaining the image quality. The proposed method
can obtain the optimal receiving array with a few elements by evaluating the mutual coherence and
the array factor of sensing matrix in SAIR system. Therefore, the proposed method can achieve better
imaging performance than the existing imaging methods with the same number of receivers.

This paper is organized as follows. In Section 2, a brief review of the CS sparse reconstruction
method in SAIR system is firstly given. Then the factors which affect the performance of the CS sparse
reconstruction method are studied and analyzed. Based on the analysis, the theory of the optimal
sparse reconstruction method is presented. In Section 3, numerical simulations and experiments are
given to validate the accuracy of the analysis and the feasibility of the proposed method. Conclusions
are drawn in Section 4.

2. THEORY

2.1. Principle of the CS Sparse Reconstruction Method in SAIR

A brief review of the existing CS sparse reconstruction method in SAIR is given here. The measurement
model of the SAIR is presented in Fig. 1.

Figure 1. The measurement schematic of the SAIR.

Assume that the target source S is located at position (x0, y0, z0), which is in the far field of the
interferometer. The positions of receivers m and n are (xm, ym, zm) and (xn, yn, zn), respectively. The
cross-correlation of the signals collected by these two receivers, namely visibility sample, is presented
as follows according to the Van Cittert-Zernike theory [12–14]:

V (u, v, w) =

∫∫
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4π
√
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where Dm and Dn are the antenna directivity, and Fm(ξ, η) and Fn(ξ, η) are the normalized antenna
pattern of m and n, respectively. (ξ, η) = (sin θ cosϕ, sin θ sinϕ), u = (xm − xn)/λ, v = (ym − yn)/λ,
w = (zm − zn)/λ, T (ξ, η) is the actual brightness temperature distribution, and T ′(ξ, η) is a modified
brightness temperature distribution.

By discretization, Eq. (1) can be expressed as

V (u, v, w) =
∑
i

∑
j

T ′(ξi, ηj) · exp
[
−j2π(u · ξi + v · ηj + w ·

√
1− ξ2i − η2j )

]
, (2)



Progress In Electromagnetics Research M, Vol. 115, 2023 153

When the receivers are located in the same x-y plane (zm = zn), Eq. (2) is simplified as follows:

V (u, v) =
∑
i

∑
j

T ′(ξi, ηj) · exp [−j2π(u · ξi + v · ηj)] , (3)

Rewrite Eq. (3) in the matrix form:

VM×1 = GM×NT′
N×1 (4)

where

GM×N =


exp([−j2π(u1ξ1 + v1η1)] · · · exp([−j2π(u1ξN + v1ηN )]

exp[−j2π(u2ξ1 + v2η1)] · · · exp([−j2π(u2ξN + v2ηN )]
... · · ·

...

exp[−j2π(uMξ1 + vMη1)] · · · exp([−j2π(uMξN + vMηN )]

 (5)

GM×N is the point spread function (PSF) of the system array, M the number of the system baseline
(M ≤ I(I − 1)/2, I the number of receivers), and N the pixel number of the BT image.

According to the CS theory, the image T′ can be recovered by solving the following convex
optimization problem [10, 15–17]:

min ∥T′∥l1 s.t. ∥V −ΦT′∥2l2 ≤ ε (6)

where the recovered image T′ satisfies the sparsity requirement, and ε is the nonnegative real parameter.
Φ is the compressed measurement matrix and designed as follows [11]:

Φ = ΨG = [Ψg1 · · ·Ψgn · · ·ΨgN ] (7)

where gn is an M × 1 column vector shown as follows:

gn =



e−j2π(u1·ξn+v1·ηn)

...

e−j2π(um·ξn+vm·ηn)

...

e−j2π(uM ·ξn+vM ·ηn)


(n = 1, · · · , N) (8)

Ψ is an M × 1 column vector of random integers between 0 and 1, where the integer 1 in the mth row
denotes the mth system baseline that is selected.

To the BT images which are not sparse, the transforms such as the discrete cosine transformation
(DCT) and wavelet transformation are needed to firstly map the BT images to the sparse form [10]. Then
the images in sparse form can be accurately reconstructed by using the state-of-the-art optimization
methods [15, 18].

2.2. Optimal Sparse Reconstruction Method in SAIR

In light of the above theoretical descriptions, the performance of the CS sparse reconstruction method
in SAIR mainly depends on the designed compressed measurement matrix Φ. According to the CS
theory, the compressed measurement matrix Φ should satisfy the restricted isometry property (RIP)
condition [10, 16, 17] to guarantee the CS recovery capabilities. So, one key factor for designing the
compressed measurement matrix Φ is the mutual coherence of Φ which is a computationally tractable
measure for assessing whether the compressed measurement matrix Φ satisfies the RIP condition [19].
In other words, the mutual coherence gives weaker guarantees of reconstruction than RIP, but is a more
practical metric for assessing CS recovery properties [19]. In addition, another key factor for designing
the compressed measurement matrix Φ is the array factor (AF) of Φ according to our research. This
is because the AF represents the response of the receiving array [20]. The response of the receiving
array, such as angular resolution and side lobe level of the antenna array, will affect the quality of the
recovered image.
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The mutual coherence µ and AFRMSE of the compressed measurement matrix Φ are evaluated by
following equations [10, 19, 20]:

µ(Φ) = max
1≤i ̸=j≤N

∣∣ϕH
i ϕj

∣∣
∥ϕi∥l2∥ϕj∥l2

(9)
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N∑
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∣∣∣∣∣
M∑

m=1

gn(m)−
M∑

m=1

Ψ(m)gn(m)

∣∣∣∣∣
2

(10)

where ϕi is the ith column of Φ, M the total number of the system baseline, and N the total pixel
number of the BT image. The lower the µ(Φ) is, the stronger the incoherence of the compressed
measurement matrix Φ is, and the better the recover capability of CS is. The lower the AFRMSE(Φ) is,
the better the array response of Φ is (or the lower the side lobe interference is).

To illustrate the correctness of the above analysis, Fig. 2 shows several different receiving array
configurations. Fig. 2(a) shows a Y-shaped array which consists of 12 isotropic antennas with equal
space of 20λ. Fig. 2(b)–Fig. 2(e) represent the layouts of receiving array formed by randomly selecting
8 elements from all 12 elements in Fig. 2(a), respectively. The mutual coherence and AFRMSE of these
arrays in Fig. 2(b)–Fig. 2(e) are calculated according to Eq. (9) and Eq. (10).

(a) (b) (c)

(d) (e)

Figure 2. (a) Original receiving array; (b) Receiving array with µ = 0.9897 and AFRMSE = 0.10;
(c) Receiving array with µ = 0.9897 and AFRMSE = 0.07; (d) Receiving array with µ = 0.9897 and
AFRMSE = 0.13; (e) Receiving array with µ = 0.9962 and AFRMSE = 0.10.

With the receiving array shown in Fig. 2(b)–Fig. 2(e), the results for recovering image of Fig. 3(a)
are shown in Fig. 3(b)–Fig. 3(e), respectively. By comparing the results shown in Fig. 3(b)–Fig. 3(d), the
image recovered by receiving array with lower AFRMSE has better quality when the mutual coherence of
arrays is the same. This is because the receiving array with lower AFRMSE has a lower sidelobe, which
can reduce the artifacts during the reconstruction. By comparing Fig. 3(b) and Fig. 3(e), the image
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(a) (b) (c)

(d) (e)

Figure 3. (a) Original BT image; (b) Image recovered with receiving array in Fig. 2(b); (c) Image
recovered with receiving array in Fig. 2(c); (d) Image recovered with receiving array in Fig. 2(d); (e)
Image recovered with receiving array in Fig. 2(e).

reconstructed by receiving array with lower value of mutual coherence has better quality when AFRMSE

of these arrays are same.
Based on the above analysis, the criterion for designing the optimal compressed sensing matrix is

presented as follows:
Φoptimal = min |AFRMSE(Φ) · µ(Φ)| (11)

With the designed compressed measurement matrix Φoptimal, the image can be recovered by using
the gradient projection for sparse reconstruction (GPSR) algorithm [15] to solve the convex optimization
equation shown in Eq. (6). The proposed method employs both the mutual coherence and the AFRMSE

of the compressed measurement matrix as the design metric to obtain the optimal receiving array to
recover the BT image with fewer receivers. The mutual coherence criterion (Eq. (9)) is used to ensure
the effective solution of the sparse reconstruction, and the AFRMSE criterion (Eq. (10)) is used to ensure
the optimal solution of the sparse reconstruction. In other words, the proposed method comprehensively
considers the front-end array design and back-end processing to achieve the optimal reconstruction while
the existing methods mainly consider the reconstruction from the perspective of back-end processing.

Figure 4 shows the flowchart of the proposed method. In Fig. 4, assume that the system receiving
array consists of K antennas, and k antennas are selected to measure the data (k ≤ K).

Figure 4. The flow chart of the proposed optimal sparse reconstruction method.
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It is worth noting that the proposed method can still work even under the conditions of antenna
elements with inconsistent radiation pattern, installation position error, etc. This is because the
proposed method selects the optimal receiving elements to reconstruct by comparing the AFRMSE

and mutual coherence of different array layouts. In practical application, the measured system array
factor includes the influence of antenna radiation pattern, array element installation error, and other
factors. Therefore, the method proposed in this paper has good applicability in practical engineering
applications. Moreover, it is concluded that the performance of the nonlinear imaging algorithm is
better than that of the linear imaging algorithm [16, 17]. So, the proposed method has better imaging
performance than the traditional G-matrix method. This is because the traditional G-matrix method
solves a linear problem while the proposed method solves a nonlinear problem as shown in Eq. (6).

3. SIMULATIONS AND EXPERIMENTS

3.1. Simulations for Imaging Earth and Ground Scenes

In this part, numerical scenarios for imaging earth and ground scenes with complex BT distribution are
held to test the proposed method. Fig. 5(a) shows the original BT image of the earth with 173 × 173
pixels. Fig. 5(b) and Fig. 5(c) give the images reconstructed by using the methods in [19] and [11] with

(a) (b)

(c) (d)

Figure 5. (a) Original BT image of the earth; (b) Image reconstructed by the method in [19] with 30
receivers; (c) Image reconstructed by the method in [11] with 30 receivers; (d) Image reconstructed by
the proposed method with 30 receivers.
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30 receivers, respectively. Fig. 5(d) shows the image reconstructed by using the proposed method with
30 receivers. By using the same number of receivers, the images reconstructed by the methods in [19]
and [11] have much artifact while the image recovered by the proposed method agrees well with the
original image.

In order to quantitatively evaluate the imaging performance of each method, the root mean square
errors (RMSEs) of the results imaged by the three methods are calculated according to the following
equation:

RMSE =

√√√√ 1

N

N∑
n=1

(T(n)−T′(n))2 (12)

where T is the original BT image of the scene, T ′ the BT image reconstructed by the imaging method,
N the total pixel number of the BT image.

Table 1. RMSEs between the reconstructed images and the original image shown in Fig. 5.

(b) (c) (d)

RMSE 0.3466 0.3532 0.3197

(a) (b)

(c) (d)

Figure 6. (a) Reference receiving array with 60 elements; (b) Receiving array designed by the method
in [19] with 30 elements; (c) Receiving array designed by the method in [11] with 30 elements; (d)
Receiving array designed by the proposed method in this paper with 30 elements.
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Table 1 shows the RMSEs between the reconstructed images and the original image shown in
Fig. 5. From Table 1, the image reconstructed by the proposed method has lower RMSE value than
those reconstructed by the other methods.

Figure 6 shows the receiving array configurations used by the above three methods to reconstruct
the images in Fig. 5. As reference, Fig. 6(a) shows the layout of a Y-shaped receiving array with 60
elements in SAIR system. Figs. 6(b)–6(c) present the receiving arrays designed by the existing methods
in [19] and [11] with 30 elements, respectively. Fig. 6(d) shows the receiving array designed by the
proposed method in this paper with 30 elements.

Figure 7(a) shows the ground scene with complex BT distribution. The size of Fig. 7(a) is 200×200
pixels. Fig. 7(b) gives the image reconstructed by using the method in [19] with the array shown in
Fig. 6(b), and Fig. 7(c) gives the image reconstructed by using the method in [11] with the array shown
in Fig. 6(c). Fig. 7(d) shows the image reconstructed by using the proposed method with the array
shown in Fig. 6(d). From Fig. 7, the images reconstructed by the methods in [19] and [11] have much
artifact while the image recovered by the proposed method agrees well with the original image.

(a) (b)

(c) (d)

Figure 7. (a) Original BT image of the ground; (b) Image reconstructed by the method in [19] with
30 receivers; (c) Image reconstructed by the method in [11] with 30 receivers; (d) Image reconstructed
by the proposed method with 30 receivers.

Table 2 lists the RMSEs between the reconstructed images and the original image shown in Fig. 7.
From Table 2, the image reconstructed by the proposed method has lower RMSE value than those
reconstructed by the other methods.

Compared with the existing methods, the proposed method can more accurately recover the image
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Table 2. RMSEs between the reconstructed images and the original image shown in Fig. 7.

(b) (c) (d)

RMSE 0.4602 0.5323 0.3789

with complex BT distribution. This is because the proposed method employs the mutual coherence and
AFRMSE of the sensing matrix in SAIR as the design metric to guarantee the sensing matrix with good
recovery capability.

3.2. Experiment for Imaging a Paper Cup with Hot Water

To further validate the efficiency of the proposed method, an experiment is carried out to image a paper
cup with hot water. Fig. 8 shows the schematic of the experimental scenario. A paper cup with hot
water is placed about 7 meters away from the prototype system. The temperature of the hot water
is measured about 75◦C, and the temperature of the room is measured about 23◦C. The operating
frequency of the prototype system is at W band. The antenna array configuration of the prototype
system is an irregular array with 12 horn antennas, which is denoted by ‘◦’ symbols in Fig. 9. The
beamwidth of each antenna is about 6 degrees. The bandwidth of the receive channel is 1GHz. The
visibility data are obtained from 12 channels of received signals after 2.4GHz synchronous sampling
and cross-correlation processing. Based on the obtained visibility data, different methods are used to
realize the reconstruction of the observation scene.

Figures 9(a) and 9(b) give the receiving arrays used by the methods in [19] and [11], respectively.
Fig. 9(c) shows the receiving array by the proposed method. The positions of the antenna elements by
three methods are denoted by the symbols ‘∗’.

Figure 8. Schematic of the experimental measurement scenario.

(a) (b) (c)

Figure 9. (a) Receiving array used by the method in [19]; (b) Receiving array used by the method
in [11]; (c) Receiving array used by the proposed method in this paper.
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(a) (b)

(c) (d)

Figure 10. (a) Image recovered by the method in [19] with 8 receivers; (b) Image reconstructed by the
method in [11] with 8 receivers; (c) Image reconstructed by the proposed method with 8 receivers; (d)
Image reconstructed by the IDFT method with 12 receivers.

Figures 10(a) and 10(b) present the results reconstructed by using the methods in [19] and [11]
with 8 elements, respectively. The size of the image reconstructed by each method is 128× 128 pixels.
Since the compressed measurement matrix is non-optimal, the performance of existing methods is
under optimum, and the paper cup is difficult to distinguish from the image. Fig. 10(c) shows the
image recovered by using the proposed method with 8 elements. The paper cup with hot water is well
reconstructed with low ripples. The width of the paper cup in Fig. 10(c) is about 7 cm, which agrees
well with the actual one. As reference, Fig. 10(d) shows the image recovered by using the IDFT method
with 12 elements. Comparing Fig. 10(c) with Fig. 10(d), the proposed method with 8 receivers has
similar imaging performance to the IDFT method with 12 receivers.

From Fig. 10, the proposed method has better recovery capability than the existing methods under
the condition of the same number of receivers.

Through the simulations and experiments in this section, the feasibility of the proposed method
is demonstrated. It can recover the BT image with better quality than the existing CS sparse
reconstruction methods with the same number of receivers. The computation time and the resources
consumed by different methods for reconstruction are listed in the following Table 3. The CPU of the
computer is intel core i9 9900KF, and the RAM of the computer is 32G.

For the same observation scene, the proposed method costs more calculation time than that of
other methods. For different observation scenes, the calculation times of the same method are different
due to the different numbers of pixels in different scenes. For all the observation scenes, the CPU and
RAM resources occupied by different methods are similar.
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Table 3. The computation time and the resources consumed by different methods.

Computation time Resource utilization

Earth Ground Paper Cup CPU RAM

Method in [11] 4.21 s 4.11 s 2.68 s 51% 21%

Method in [19] 4.18 s 5.95 s 2.41 s 49% 17%

Proposed method 4.43 s 6.03 s 2.96 s 51% 18%

4. CONCLUSIONS

The main contribution of this paper is to propose a new optimal sparse reconstruction method for
imaging the BT map in SAIR. The proposed method employs both the mutual coherence and the
AFRMSE of the compressed measurement matrix as the design metric to obtain the optimal receiving
array to recover the BT image with a few receivers. Numerical and experimental results demonstrate
that the proposed method has better recovery capabilities than the existing methods in SAIR. The
method proposed in this paper provides an effective guide for reducing the complexity of the SAIR
system in practical application.
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