Vol. 117
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-06-09
Design of High-Performance Parallel-Connected Filters Using Chained Filtering Functions
By
Progress In Electromagnetics Research M, Vol. 117, 105-118, 2023
Abstract
This paper presents a design of high-performance parallel-connected filters using the Chained filtering function. The filtering functions enable the placement of multiple return loss zeros at the same frequency, resulting in reduced sensitivity to fabrication tolerance and design complexity compared to traditional Chebyshev counterparts. To demonstrate the feasibility of this technique, a new filtering function (FN) based on Chained filtering function is derived, and prototypes of fourth and sixth-degree Chained function filters in a parallel-connected topology are designed and fabricated. The overall size of the filters is 2.5 cm x 4 cm (fourth degree) and 2.5 cm x 5 cm (sixth degree). The measured insertion and return losses are 2.833 dB and 16.150 dB (fourth degree), and 2.674 dB and 18.074 dB (sixth degree). The achievable selectivity of the filters is 78.17 (fourth degree) and 89.68 (sixth degree). This design technique can serve as a useful tool for filter design engineers in terms of implementation.
Citation
Francis Emmanuel Chinda, Socheatra Soeung, Muhammad Sani Yahya, Sovuthy Cheab, and Huzein Fahmi Hawari, "Design of High-Performance Parallel-Connected Filters Using Chained Filtering Functions," Progress In Electromagnetics Research M, Vol. 117, 105-118, 2023.
doi:10.2528/PIERM22112506
References

1. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, "Tunable filters," Microw. Filters Commun. Syst., 731-783, 2018, doi: 10.1002/9781119292371.ch22.
doi:10.1002/9781119292371.ch22

2. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, "Synthesis of networks: Direct coupling matrix synthesis methods," Microw. Filters Commun. Syst., 247-294, 2018, doi: 10.1002/9781119292371.ch8.
doi:10.1002/9781119292371.ch8

3. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 1 I, 1-10, 2003, doi: 10.1109/TMTT.2002.806937.
doi:10.1109/TMTT.2002.806937

4. Hunter, I. C., L. Billonet, B. Jarry, and P. Guillon, "Microwave filters --- Applications and technology," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 794-805, 2002, doi: 10.1109/22.989963.
doi:10.1109/22.989963

5. Zhang, Y. and K. L. Wu, "General method for synthesizing dispersive coupling matrix of microwave bandpass filters," Int. J. Microw. Wirel. Technol., Vol. 14, No. 3, 379-386, 2022, doi: 10.1017/S1759078721000672.
doi:10.1017/S1759078721000672

6. Pommier, V., D. Cros, P. Guillon, A. Carlier, and E. Rogeaux, "Transversal filter using whispering gallery quarter cut resonators," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1779-1782, 2000, doi: 10.1109/MWSYM.2000.862324.

7. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, "Characterization of lossless lowpass prototype filter functions," Microw. Filters Commun. Syst., 87-127, 2018, doi: 10.1002/9781119292371.ch3.
doi:10.1002/9781119292371.ch3

8. Lalbakhsh, A., et al. "A design of a dual-band bandpass filter based on modal analysis for modern communication systems," Electron., Vol. 9, No. 11, 1-13, 2020, doi: 10.3390/electronics9111770.
doi:10.3390/electronics9111770

9. Ahn, K. P., A. Saitou, and K. Honjo, "Group delay analysis of differential-mode coupled four lines bandpass filters," Asia-Pacific Microw. Conf. Proceedings, APMC, Vol. 2, 1260-1263, 2006, doi: 10.1109/APMC.2006.4429635.

10. Perenić, G., N. Stamenković, N. Stojanović, and N. Denić, "Chained-function filter synthesis based on the modified jacobi polynomials," Radioengineering, Vol. 27, No. 4, 1112-1118, 2018, doi: 10.13164/re.2018.1112.
doi:10.13164/re.2018.1112

11. Wu, Y. and Q. Zeng, "A novel dual-band waveguide filter with multiple transmission zeros based on TE102- and TE103-modes," IEEE Microw. Wirel. Components Lett., Vol. 32, No. 10, 1159-1162, 2022, doi: 10.1109/LMWC.2022.3175993.
doi:10.1109/LMWC.2022.3175993

12. Luhaib, S. W. O., M. S. Bakr, I. C. Hunter, and N. Somjit, "Compact triple-mode microwave dielectric resonator filters," Int. J. Electron. Lett., 194-204, 2019, doi: 10.1080/00207217.2019.1582714.

13. Lim, Y. P., S. Cheab, S. Soeung, and P. W. Wong, "An the design and fabrication of chained-function waveguide filters with reduced fabrication sensitivity using CNC and DMLS," Progress In Electromagnetics Research B, Vol. 87, 39-60, 2020, doi: 10.2528/PIERB20011101.
doi:10.2528/PIERB20011101

14. Basheer, A., H. Abdulhussein, and J. K. Ali, "Design of bandpass filter for 5g applications with high-selectivity and wide band rejection," 2022 Muthanna International Conference on Engineering Science and Technology (MICEST), 179-183, 2022.
doi:10.1109/MICEST54286.2022.9790185

15. Liu, J., Y. X. Wang, G. Y. Wei, R. L. Jia, and Y. L. Duan, "Design of high-selective wideband bandpass filter with a notched-band and harmonic suppression," Prog. Electromagn. Res. Lett., Vol. 105, 57-62, 2022, doi: 10.2528/PIERL22051001.
doi:10.2528/PIERL22051001

16. Zhang, Y., X. Shang, F. Zhang, and J. Xu, "A 3-D printed Ku-band waveguide filter based on novel rotary coupling structure," IEEE Microw. Wirel. Components Lett., Vol. 33, No. 1, 35-38, 2022, doi: 10.1109/LMWC.2022.3194367.
doi:10.1109/LMWC.2022.3194367

17. Lim, Y. P., Y. L. Toh, S. Cheab, G. S. Ng, and P. W. Wong, "Chained-function waveguide filter for 5G and beyond," IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, 107-110, 2019, doi: 10.1109/TENCON.2018.8650548.

18. Wong, P. W., "A sustainable and fast approach to filter design for 5G implementation," RFM 2018 --- 2018 IEEE Int. RF Microw. Conf. Proc., Vol. 88, No. 3, 349-351, 2018, doi: 10.1109/RFM.2018.8846520.

19. Chappa, R., L. Janjanam, and S. K. Saha, "Performance analysis of optimal FIR LPF and HPF using AVOA," 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA), 1-6, 2023, doi: 10.1109/iccubea54992.2022.10011081.

20. Lim, Y., S. Cheab, S. Soeung, and P. Wong, "On the design and fabrication of chained-function waveguide filters with reduced fabrication sensitivity using CNC and DMLS," Progress In Electromagnetics Research B, Vol. 87, 39-60, 2020.
doi:10.2528/PIERB20011101

21. Fernandez-Prieto, A., A. Lujambio, J. Martel, F. Medina, F. Martin, and R. R. Boix, "Balanced-to-balanced microstrip diplexer based on magnetically coupled resonators," IEEE Access, Vol. 6, 18536-18547, 2018, doi: 10.1109/ACCESS.2018.2820073.
doi:10.1109/ACCESS.2018.2820073

22. Cheab, S., P. W. Wong, and X. Y. Chew, "Parallel connected dual-mode filter," IEEE Microw. Wirel. Components Lett., Vol. 25, No. 9, 582-584, 2015, doi: 10.1109/LMWC.2015.2451393.
doi:10.1109/LMWC.2015.2451393

23. Al-Yasir, Y. I. A., N. O. Parchin, R. A. Abd-Alhameed, A. M. Abdulkhaleq, and J. M. Noras, "Recent progress in the design of 4G/5G reconfigurable filters," Electron., Vol. 8, No. 1, 2019, doi: 10.3390/electronics8010114.
doi:10.3390/electronics8010114

24. Mishra, V. and A. K. Sign, "Design and analysis of coupling matrix for microwave filter applications," Int. J. Electr. Electron. Commun. Eng., Vol. 2, No. 7, 508-520, 2012.

25. Bong, D. C. H., et al. "Analysis and design of a novel microstrip filter for C-band applications," IEEE Access, Vol. 7, No. 5, 130922-130936, 2019, doi: 10.1109/ICSSS.2019.8882868.
doi:10.1109/ACCESS.2019.2940059

26. Tang, C. W. and J. M. Jiang, "Design of the microstrip bandpass filter with 4 band-switching modes," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 3, 1-5, 2022, doi: 10.1109/TCSII.2022.3229105.

27. Cheab, S., P. W. Wong, and S. Soeung, "Design of multi-band filters using parallel connected topology," Radioengineering, No. 27, 186-192, 2018, doi: 10.13164/re.2018.0186.
doi:10.13164/re.2018.0186

28. Lesnikov, V., T. Naumovich, and A. Chastikov, "Sensitivity analysis of digital filters using the continued fraction expansion," 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), 1-5, 2018, doi: 10.1109/MWENT.2018.8337178.

29. Zhao, K. and D. Psychogiou, "Single-to-multi-band reconfigurable acoustic-wave-lumped-resonator bandpass filters," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 69, No. 4, 2066-2070, 2022, doi: 10.1109/TCSII.2021.3139008.