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Abstract—This paper presents a design of high-performance parallel-connected filters using Chained
filtering function. The filtering functions enable the placement of multiple return loss zeros at the same
frequency, resulting in reduced sensitivity to fabrication tolerance and design complexity compared to
traditional Chebyshev counterparts. To demonstrate the feasibility of this technique, a new filtering
function (FN ) based on Chained filtering function is derived, and prototypes of fourth and sixth-degree
Chained function filters in a parallel-connected topology are designed and fabricated. The overall size of
the filters is 2.5 cm×4 cm (fourth degree) and 2.5 cm×5 cm (sixth degree). The measured insertion and
return losses are 2.833 dB and 16.150 dB (fourth degree), and 2.674 dB and 18.074 dB (sixth degree).
The achievable selectivity of the filters is 78.17 (fourth degree) and 89.68 (sixth degree). This design
technique can serve as a useful tool for filter design engineers in terms of implementation.

1. INTRODUCTION

Parallel connected (PC) two-port chained function (CF) networks also identified as transversal and
foster filters have been investigated and presented in [1, 2]. The network can be synthesized by rotating
the submatrix in even/odd mode and grouping the residues [3, 4]. Computational methods were used to
synthesize two branch parallel chained networks [5]. A transversal filter’s admittance matrix was equated
with a ladder network, and additional computations were performed to design a 4-pole transversal
dielectric resonator filter [4]. The eigenmode expansion technique is applied to H and Z matrix for the
even-mode degree to design foster types of networks in [6, 7]. This paper presents a straightforward
and more generalized technique to design and synthesize such networks. Fourth and sixth-degree filter
prototypes are fabricated to prove the feasibility of this approach. This paper is sequenced as follows.
Section 2 presents the filtered theoretical analysis and synthesis techniques. Section 3 presents the
design results and discussions including the filters prototypes and measured values. Section 4 provides
the conclusion.

1.1. Contributions

1. This work introduced a new Chained filtering function for even and odd mode admittance,
which can place multiple return loss zeros at the same frequency. This function can be used to
design symmetrical and asymmetrical filters across various technologies and frequencies. It offers
advantages in producing high-performance filters with reduced sensitivity. This will be a valuable
mathematical tool for filter design engineers to simplify design and improve performance.
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2. This research introduces a new technique for realizing compact filter prototypes using open-loop
resonators in parallel connected topology. This will significantly enhance the filter-tuning processes
for faster production at a lower cost. The filter’s compact size and improved tolerance properties
make it a promising candidate for integration into front-end subsystems and deployment in wireless
communication, satellite, and radar systems applications.

2. METHODOLOGY

This section provides detailed steps and techniques employed to achieve the design of the filters.

2.1. Formation of Chained Filtering Function

A Chained filtering function in this work can be formed by multiplying the Chebyshev polynomial
function of the first kind. The seed function is generated in Maplesoft by using Eq. (1).

Ki+1 (ω) = 2ωKi (ω)−Ki−1 (ω) (1)

where K0(ω) = 1 and K1(ω) = ω, while i = 2, 3, . . . , ns(k) represent the coefficients seed function
polynomial.

2.2. Seed-function Polynomial Selection

The transfer and reflection function responses were theoretically plotted for all possible seed functions
for both fourth and sixth-order filters using Maplesoft Maple to predict the filter’s performance in terms
of transmission and reflection powers within the passband, while also maintaining a return loss value of
20 dB and a ripple factor (ε) of 0.1005. Based on the expected response, the seed function polynomials
in Eqs. (1) and (2) were selected for the synthesis of fourth and sixth-order filters. Figs. 1 and 2 show
the theoretical plots for 4th and 6th order CF filters.

FN = 4ω4 − 4ω2 + 1 (2)

FN = 8ω6 + 12ω4 + 6ω2 − 1 (3)

Figure 1. 4th order CF theoretical plot. Figure 2. 6th Order CF theoretical plot.

2.3. The Parallel Connected Chained Function Filter Synthesis Technique

The technique for synthesizing parallel connected chained function filters involves using the even and
odd mode admittance expressions of low-pass prototype networks [8]. These expressions allow for the
creation of sub-branches that can be connected in parallel between the source and load. When being
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Figure 3. Inverter-coupled low-pass Chained function network.

combined, these sub-branches exhibit the same properties as a ladder network. The inverter network
depicted in Fig. 3 can be synthesized by solving for the functions FN , S11, and S21.
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j

2
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(5)

|S21(ω)|2 =
1

1 + ε2F 2
N (ω)

(6)

where h, j, and pr are the positions of transmission zeros (TZ), and N is the degree of the filter. The
admittance of even-mode polynomial Ye can be obtained by solving for the roots of S11(h) as described
in [9, 10]. The transfer function matrix ABCD for the filter can be formed using relevant expressions
from [3, 21], and using partial fraction expansion allows for the placement of the resonators into a parallel
network [12, 13].

S21(p) =
Ye − Yo

(1 + Ye)(1 + Yo)
(7)

S11(p) =
(1− YeYo)

(1 + Ye)(1 + Yo)
(8)

2.4. Synthesis of Fourth Order Chained-Function Filter

The full synthesis technique of the fourth-order chained function is presented. The filtering function
is formed by multiplying the Chebyshev seed function polynomial of the first kind [11]. The synthesis
technique involves deriving the even and odd modes of admittance of the filter from Eq. (2). The
synthesis steps are as follows.

Step 1: The S-parameters are used to derive the zeros in Eq. (9):

h8 + 2h6 + 1.5h4 + 0.5h2 + 6.25 = 0 (9)

Step 2: The transfer function can be derived as a two-branch parallel network by formulating Ye,
the roots of S11, and S11 is used to form the polynomial, H(h) as in Eq. (10) [4].

1 + Ye = 1 +
N(h)

D(h)
(10)

Sep 3: The denominator can be factorized using partial fraction expression, and Ye is split into two
parts as.

Y ′
e (h) =

1

1.080737547h+ j0.8282225677
+

1

2.1578335886h− j3.301737005
(11)

Step 4: The same approach can be used to generate the same results in the odd-mode admittance
network.

Yo(h) =
1

1.080737547h− j0.8282225677
+

1

2.1578335886h+ j3.301737005
(12)
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The J-admittance values form the numerator, while the capacitance values form the denominator
of this technique. Choosing multiple parallel branches is a potential advantage of this technique in
filter design as it allows designers to place resonators freely in the network. This technique can be
applied in the design of odd-mode symmetrical higher-order filter networks.

2.5. Synthesis of Sixth-Order Chained-Function Filter

The full synthesis procedure for a sixth-order parallel connected chained function filter is presented. The
filtering function is synthesized to prove the feasibility of this approach in higher filter order targeting at
achieving better performance and selectivity. The complete synthesis technique of the sixth-order filter
is presented. The filtering function is formed by multiplying the Chebyshev seed function polynomial
of the first kind. The synthesis technique is carried out by deriving the filter even and odd modes of
admittance from Eq. (3). The synthesis steps guide is as follows.

Step 1: The even-mode impedance, Ye, and Yo can be derived using Eqs. (13)–(14), and the zeros
can be calculated [21].

h12 + 3h10 + 3.75h8 + 2.5h6 + 0.9375p2 + 0.1875h2 + 1.5625 = 0 (13)

Step 2: By using Eq. (9), the even mode admittance can be formed as in Eq. (13).

Y ′
e (h) =

h3 − 0.6576446734ih2 + 1.743053976h− 0.8291561977i

1.555186313h3 − 1.022759995i+ 0.75000000
(14)

Step 3: The denominator can be factorized using partial fraction expression and Ye is split into two
parts as.

Y ′
e (h) =

1

1.982h− j0.8708
+

1

1.5534h+ j1.9510
+

1

2.5456p+ j3.7217
(15)

Step 4: The same technique can be used on the odd mode admittance network; the same result is.

Y ′
o(h) =

1

1.982h+ j0.8708
+

1

1.5534h− j1.9510
+

1

2.5456h− j3.7217
(16)

The numerator is the J-admittance values, and the denominator is the capacitance values. Fig. 4
shows the new parallel chained network formed for the sixth-order filter. The circuit simulation S-
parameters response is presented in Fig. 5. By using bandpass transformation equations in [12, 13],
the low-pass network can be converted into a band-pass filter.

2.6. The Circuit Simulation of Parallel Chained Function Filters

The J-admittance and capacitance values derived from Eqs. (11) and (15) are converted into schematic
parallel low-pass networks for the fourth and sixth-order filters to assess their low-pass performance [14].
The low-pass schematic network of the filter is presented in Figs. 4 and 5, while Figs. 6 and 7 show the
S-parameter performance. Table 1 provides an overview of the low-pass parameters of the network.

Figure 4. Fourth-order 2-branch LP layout. Figure 5. Sixth-order 2-branch LP layout.
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Figure 6. Fourth-order LP response. Figure 7. Sixth-order LP response.

Table 1. The fourth and sixth-order low-pass parameters.

Fourth order

Parameters

{2,2}Seed
Function

Sixth-order LP

Parameters

{2,2,2}Seed
Function

C1 = C2 1.0807F C1 = C6 1.982F

C3 = C4 2.1578F C2 = C4 1.553F

JS1 = J2L 1 C3 = C5 2.546F

JS3 = J4L 1 JS1 = JS2 = JS3 1

J12 0.8282 J4L = J5L = J64 1

J34 −3.3023 J16 −0.8708

J25 1.9509

J34 −3.7217

2.7. The Parallel Chained Function Bandpass Transformation

The low-pass parameters of the filters are transformed into a bandpass filter by using the appropriate
capacitive transformation equations in [15] and [16] to determine their performance in bandpass
networks. Figs. 8 and 9 present the bandpass schematic layout of the filters, and Figs. 10 and 11
show its S-parameters performance. Table 2 summarizes the inductance and capacitance parameters of
the bandpass filters.

Figure 8. Fourth-order 2-branch BP layout. Figure 9. Sixth-order 2-branch BP layout.
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Figure 10. Fourth-order filter BP response. Figure 11. Sixth-order filter BP response.

The parallel bandpass filter networks for the fourth and sixth orders have generated two poles with
a center frequency of 3.5GHz and a return loss of 20 dB, as expected. This indicates a narrowband
response and excellent performance in terms of signal reflection. The performance response aligns with
the theoretical one, indicating consistency between the actual results and anticipated outcomes.

Table 2. Fourth and sixth-order bandpass parameters.

Fourth-order BP

Parameters

{2,2}Seed
Function

Sixth-order BP

Parameters

{2,2,2}Seed
Function

L1 = L2 0.002 nH L1 = L6 1.014 nF

L3 = L4 1.014 nH L2 = L5 0.0025 nF

C1 = C2 991.423 pF C1 = C6 992 pF

C3 = C4 748.35 nH C3 = L4 548.2 nH

2.8. Coupling Matrix Extractions

The process for obtaining the filters coupling matrix involves mapping and extracting it from the derived
filtering function using the expressions in [17] and Eqs. (17) and (18). The transmission and reflection
coefficients, S11 and S21, are used to derive the coupling matrix for the filter network. Next, a similarity
transformation and matrix element annihilation are performed to obtain the complete coupling matrix,
M , as presented in [18–20]. This synthesized coupling matrix is then divided into subnetworks, and
a series of configurations are carried out for the entire matrix until the desired coupling is achieved,
as described in [17]. The full coupling matrix, M , for the fourth- and sixth-order filters is shown in
Eqs. (19) and (20), which translate to N + 2 configurations and routing structures shown in Figs. 12
and 13.

S11(ω) =
FN (ω)

EN (ω)
S21(ω) =

PN (ω)

εEN (ω)
(17)

y21(s) = j

N∑
k=1

TNkT1k

ω − λk
y22(s) = j

N∑
k=1

T 2
Nk

ω − λk
(18)
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Figure 12. 4th-order filter routing topology. Figure 13. 6th-order filter routing topology.

where λk represents the pole of eigenvalue, and T1k and TNk are the orthogonal first and last rows of
the matrix T [21].

M =


0 0.68 0.96 0 0 0

0.68 0 0 0 1.53 0
0.96 0 0 0.77 0 0
0 0 0.77 0 0 −0.96
0 1.53 0 0 0 0.68
0 0 0 −0.96 0.68 0

 (19)

M =



0 0.638 0.629 0.447 1.199 0 0 0
0.638 0 0 0 0 0 0 0
0.629 0 0 0 0 0 0 0
0 0 −0.971 0 0 −0.971 0 0
0 0.356 0 0 0 0 0.356 0
0 0 0 1.199 0 0 0 0.638
0 0 0 0 0.447 0 0 0.629
0 0 0 0 0 0.638 0.629 0


(20)

3. RESULTS AND DISCUSSION

3.1. Design and Simulation

This section presents the general overview of parallel-connected chained-function filter realization. The
synthesized network can be realized on a microstrip if theQ-factor of the resonator is 300 or lower [21, 22].
An open loop microstrip resonator is chosen for this work because of its ease of tuning and inherent
properties of reduced sensitivity. The simulation is carried out using an advance-design-system (ADS).
The ideal circuit is then converted into a microstrip circuit by specifying the length and width of the
resonators, as well as the loss and other parameters defining the microstrip properties [23]. In this stage,
achieving a good inter-resonator coupling is based on extracting the external quality factor (Qe) and
coupling coefficient (K) of the filters.

3.2. The Filters Inter-Resonators Coupling

The resonator coupling can be achieved by adjusting the gap or distance between the resonators. The
coupling configuration between the adjacent resonators is a mixed coupling [24]. The values of the
coupling coefficient (K) were obtained using the line calculation technique in ADS and Eq. (21) by
carefully adjusting the gap and recording the resonant frequencies [1]. Table 3 presents the values of
the coupling coefficient of the resonators, and Fig. 14 shows plots of the coupling coefficient versus the
distance or gap (S) between the resonators.

M =
f0
BW

× f2
2 − f2

1

f2
2 + f2

1

(21)
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Table 3. The coupling coefficient K versus S.

S (mm) f 1 (GHz) f 2 (GHz) K

0.5 3.4490 3.6200 0.00674

1.0 3.5060 3.5940 0.03450

1.5 3.5320 3.5770 0.01760

2.0 3.5480 3.5630 0.00590

Figure 14. Coupling coefficient (K) versus the resonator gap (S).

The frequencies of the first and second eigenmodes are denoted by f1 and f2, while the center
frequency is represented by f0. M is the normalized coupling coefficient M ; the coupling factor is K;
and the filter bandwidth is BW.

3.3. The Filters Physical Layout Simulations

The synthesized low-pass admittance values for the filters are converted into an optimal physical network
for realization [25]. The resonators are connected in parallel and chained to the filter output. Figs. 15
and 16 show the final physical layout of the filters, and Figs. 17 and 18 present the transmission and
reflection S-parameters response.

Figure 15. 4th-order parallel chained function
(PCF) physical layout.

Figure 16. 6th-order PCF physical layout.
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Figure 17. 4th order PCF response. Figure 18. 6th order PCF response.

The filters have produced two poles in the passband as expected for chained function
implementation. The fourth-order filter has achieved simulated insertion and return loss performances of
0.899 dB and 20 dB, the bandwidth and fractional bandwidth of 46.8MHz and 1.34%, and a rejection of
14.9 dB, while the sixth-order filter has achieved simulated insertion and return losses of 0.409 dB/20 dB,
the bandwidth and fractional bandwidth of 36.6MHz and 1.045%, and a rejection of 18.03 dB. These
results have been validated and are consistent with the theoretical response. The ability of Chained
function polynomials in the placement of multiple filter return loss (RL) zeros at the same frequency
is demonstrated. The simulation results have proven that the filter can provide good performance in
terms of return loss, insertion loss, and out-of-band rejection levels.

3.4. The Filter Prototypes

The filter prototypes are fabricated on RT/Roger duroid 5880 substrates, with a thickness of 787µm, a
copper-clad thickness of 17.5µm, a dielectric constant (εr) of 2.2, a loss tangent (tan δ) of 0.0009, and
electrical length is 180◦, which is equivalent to λ/2 [26, 27]. The dimensions of the filter resonator are
2.45mm in width and 3.15mm in length which were obtained using the expressions in [1]. The input
and output ports of the filter are connected to SMA connectors with a size of 3.5mm. The feed lines
between the resonators and connectors are 10mm. Figs. 19 and 20 present fabricated prototypes of the
filter while the measured S-parameter performance is presented in Figs. 21 and 22.

Figure 19. 4th-order PC filter prototype. Figure 20. 6th-order PC filter prototype.

The filter’s overall size is 2.5 cm×4 cm (fourth order) and 2.5 cm×5 cm (sixth order).
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3.5. Comparison of the Filters Simulated and Measured Results

The simulated and measured results of the fourth- and sixth-order parallel connected Chained function
filters are compared in terms of insertion loss, return loss, bandwidth, and out-out-of-band rejection
performance as follows. Figs. 21 and 22 present the filter’s simulated and measured transmission and
reflection responses.

Figure 21. 4th order simulated/measured
response.

Figure 22. 6th order simulated/measured
response.

The simulated and measured performances of the two filters are presented in this report. The
first filter is a fourth order filter, which exhibits simulated and measured insertion/return losses of
0.899 dB/20 dB and 2.83 dB/16.150 dB. The simulated and measured bandwidths are 46.8MHz and
50.4MHz with fractional bandwidths (FBWs) of 1.34% and 1.44%. However, a small shift of 0.1% in
the measured bandwidth was observed, which can be due to package parasitic effects, calibration cable
loss, SMA soldering port and ground effects, or microstrip line junction radiation.

For the sixth order parallel connected Chained function filter, the simulated and measured
insertion/return loss values are 0.396 dB/20 dB and 2.64 dB/18.03 dB. The simulated and measured
bandwidths are 36.6MHz and 44.1MHz with FBWs of 1.045% and 1.262%. The filter exhibits good
filtering performance. However, a small shift of 0.217% in the measured bandwidth was observed, which
may be due to package parasitic effects, calibration cable loss, SMA soldering port and ground effects,
or microstrip line junction radiation. These results indicate that the filters are compact and suitable
for applications where high-performance filtering is required. The observed small shift in the measured
bandwidth should be considered in the specific application.

3.6. Sensitivity Analysis

Sensitivity analysis is conducted on a parallel connected Chained function filter to prove and validate its
fabrication tolerance [25, 28]. In this work, the analysis is carried out on the filter low-pass components
values in ADS to check the impact of tolerance in the passband return loss levels. The values are modified
to have a difference of (±1%, ±2%). The distribution’s variance was chosen to provide a maximum
tolerance of approximation as specified by the filter fabrication machines. Table 4 summarizes the filter
tolerance parameters, while Figs. 23 to 26 present the performance of the filter when tolerance is applied.

The study found that higher applied tolerances can cause passband shifts in PC chained function
filters. Tighter tolerances during fabrication result in lower filter sensitivity, leading to a more precise
and predictable filter response. Using components with tight tolerances at the approximation stage and
careful fabrication control can minimize sensitivity [15, 29]. The finding also confirmed that parallel-
connected chained function filters are less sensitive to manufacturing errors, preserving selectivity. This
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Figure 23. ±1% tolerance affects on 4th order
filter.

Figure 24. ±2% tolerance effects.

Figure 25. ±1% tolerance affects on 6th order
filter.

Figure 26. ±2% tolerance effects.

Table 4. Summary of tolerance impacts on the fourth and sixth-order pc chained filters.

4th order filter

applied tolerance
RL Change (%)

6th order filter

applied tolerance
RL Change (%)

−1% 2.60% −1% 4.10%

+1% 9.42% +1% 6.46%

−2% 8.5% −2% 9.76%

+2% 12.62% +2% 11.81%

is exhibited by the reduced percentage shift in RL zeros separations of the filters. The further apart
separation of the filter poles is evident confirming higher manufacturing

3.7. Comparison with Related Work

Table 5 presents a comparison between the realized filters in this work and related research. This
filter has achieved significant improvements in terms of selectivity insertion loss, return loss, rejection
performance, and size compared to previous work. The reduced size of our filter makes it ideal for
integration into wireless communication and front-end subsystems.
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Table 5. Comparison of similar work.

Ref.

Year

Filter

order

Topology

Type

Return

Loss

(dB)

Insertion

Loss

(dB)

BW (MHz)

Out-of-Band

Rejection

(dB)

Selectivity

[21] 4 Parallel 12.6 2 2.4 23 83.3

[22] 6 Series 14 2.8 624 30 8.33

[25] 5 Series 13 5.2 4.1 25 24

[17] 6 Series 13 2.7 480 25 8.33

[20] 4 Parallel 14 2.8 40 30 60

This work 4 Parallel 16.150 2.83 50.4 20.23 78.17

This work 6 Parallel 18.03 2.64 44.1 20.55 89.68

4. CONCLUSION

Fourth- and sixth-order prototypes of high-performance parallel-connected filters using Chained filtering
functions were designed and fabricated. The overall size of the filters is 2.5 cm×4 cm (fourth order) and
2.5 cm×5 cm (sixth order). The achieved measured insertion/return loss is 2.83 dB/16.150 dB (fourth
order) and 2.64 dB/18.074 dB (sixth order) filters. The selectivity obtained is 78.17 (fourth order) and
89.68 (sixth order). The theoretical and measured results were validated and are consistent with each
other. The advantage of this filter prototype is that it offers reduced sensitivity and enhanced tuning
processes while retaining performance comparable to conventional Chebyshev filters. The sensitivity
analysis conducted on the filters has fully demonstrated their reduced sensitivity to manufacturing
tolerance and proven their reliability. These filters are promising candidates for integration where
high performance and selectivity are required. They can be used as a very useful design tool for any
filter design engineer, as lower and higher-order filters can be implemented using chained function
polynomials.
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