Vol. 117
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-05-19
A New Compressive Sensing Method for Speckle Reducing in Complex-Valued SAR Data
By
Progress In Electromagnetics Research M, Vol. 117, 37-46, 2023
Abstract
High resolution Synthetic Aperture Radar (SAR) images are affected by speckle noise, which considerably reduces their visibility and complicates the target identification. In this paper, a new Compressive Sensing (CS) method is proposed to reduce the speckle noise effects of complex valued SAR images. The sparsity of the SAR images allows solving the CS problem using Multiple Measurements Vector (MMV) configuration. Therefore, a special weighted norm is constructed to solve the optimization problem, so that the Variance-Based Joint Sparsity (VBJS) model is used to calculate the weights. An efficient Alternating Direction Method of Multipliers (ADMM) is developed to solve the optimization problem. The obtained results using raw complex-valued measurements with ground truth demonstrate the effectiveness of the proposed despeckling method in terms of both image quality and computational cost.
Citation
Nabil Gherbi, Azzedine Bouaraba, Mustapha Benssalah, and Aichouche Belhadj Aissa, "A New Compressive Sensing Method for Speckle Reducing in Complex-Valued SAR Data," Progress In Electromagnetics Research M, Vol. 117, 37-46, 2023.
doi:10.2528/PIERM22111505
References

1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, Vol. 11, Wiley, 1991.

2. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, Vol. 1, No. 1, 6-43, 2013.
doi:10.1109/MGRS.2013.2248301

3. Massonnet, D. and J. C. Souyris, Imaging with Synthetic Aperture Radar, EPFL Press, 2008.
doi:10.1201/9781439808139

4. Lee, J. S., "Digital image enhancement and noise filtering by use of local statistics," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 2, 165-168, 1980.
doi:10.1109/TPAMI.1980.4766994

5. Kuan, D. T., A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, 165-177, 1985.
doi:10.1109/TPAMI.1985.4767641

6. Frost, V. S., J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, "A model for radar images and its application to adaptive digital filtering of multiplicative noise," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 4, No. 2, 157-166, 1982.
doi:10.1109/TPAMI.1982.4767223

7. Lopes, A., R. Touzi, and E. Nezry, "Adaptive speckle filters and scene heterogeneity," IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 6, 992-1000, 1990.
doi:10.1109/36.62623

8. Lopes, A., E. Nezry, R. Touzi, and H. Laur, "Structure detection and statistical adaptive speckle filtering in SAR images," International Journal of Remote Sensing, Vol. 14, No. 9, 1735-1758, 1993.
doi:10.1080/01431169308953999

9. Bioucas-Dias, J. M. and M. A. Figueiredo, "Multiplicative noise removal using variable splitting and constrained optimization," IEEE Transactions on Image Processing, Vol. 19, No. 7, 1720-1730, 2010.
doi:10.1109/TIP.2010.2045029

10. Xu, B., Y. Cui, Z. Li, B. Zuo, J. Yang, and J. Song, "Patch ordering-based SAR image despeckling via transform-domain filtering," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 4, 1682-1695, 2014.
doi:10.1109/JSTARS.2014.2375359

11. Sabanci, K., E. Yigit, A. Toktas, and A. Kayabasi, "A Hue-domain filtering technique for enhancing spatial sampled compressed sensing-based SAR images," IET Radar, Sonar & Navigation, Vol. 13, No. 3, 357-367, 2019.
doi:10.1049/iet-rsn.2018.5210

12. Ozcan, C., B. Sen, and F. Nar, "Sparsity-driven despeckling for SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 1, 115-119, 2015.
doi:10.1109/LGRS.2015.2499445

13. Feng, W., G. Nico, and M. Sato, "GB-SAR interferometry based on dimension-reduced compressive sensing and multiple measurement vectors model," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 1, 70-74, 2018.
doi:10.1109/LGRS.2018.2866600

14. Borcea, L. and I. Kocyigit, "A multiple measurement vector approach to synthetic aperture radar imaging," SIAM Journal on Imaging Sciences, Vol. 11, No. 1, 770-801, 2018.
doi:10.1137/17M1142065

15. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526

16. Liu, S., J. Zhang, J. Liu, and Q. Yin, "l1/2,1 group sparse regularization for compressive sensing," Signal, Image and Video Processing, Vol. 10, No. 5, 861-868, 2016.
doi:10.1007/s11760-015-0829-6

17. Scarnati, T. and A. Gelb, "Accelerated variance based joint sparsity recovery of images from fourier data," arXiv preprint arXiv:1910.08391, 2019.

18. Gelb, A. and T. Scarnati, "Reducing effects of bad data using variance based joint sparsity recovery," Journal of Scientific Computing, Vol. 78, No. 1, 94-120, 2019.
doi:10.1007/s10915-018-0754-2

19. Güven, H. E., A. Güngör, and M. Cetin, "An augmented Lagrangian method for complex-valued compressed SAR imaging," IEEE Transactions on Computational Imaging, Vol. 2, No. 3, 235-250, 2016.
doi:10.1109/TCI.2016.2580498

20. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," Journal of Fourier Analysis and Applications, Vol. 14, No. 5, 877-905, 2008.
doi:10.1007/s00041-008-9045-x

21. Giles, D., "The majorization minimization principle and some applications in convex optimization,", Thesis, 2015, doi: 10.15760/honors.175.

22. Archibald, R., A. Gelb, and R. B. Platte, "Image reconstruction from undersampled Fourier data using the polynomial annihilation transform," Journal of Scienti c Computing, Vol. 67, No. 2, 432-452, 2016.
doi:10.1007/s10915-015-0088-2

23. Wang, Y., J. Yang, W. Yin, and Y. Zhang, "A new alternating minimization algorithm for total variation image reconstruction," SIAM Journal on Imaging Sciences, Vol. 1, No. 3, 248-272, 2008.
doi:10.1137/080724265

24. Duersch, M. I. and D. G. Long, "Analysis of time-domain back-projection for stripmap SAR," International Journal of Remote Sensing, Vol. 36, No. 8, 2010-2036, 2015.
doi:10.1080/01431161.2015.1030044

25. Ponmani, E. and P. Saravanan, "Image denoising and despeckling methods for SAR images to improve image enhancement performance: A survey," Multimedia Tools and Applications, Vol. 80, No. 17, 26547-26569, 2021.
doi:10.1007/s11042-021-10871-7

26. Yigit, E., S. Demirci, C. Ozdemir, and M. Tekbas, "Short-range ground-based synthetic aperture radar imaging: Performance comparison between frequency-wavenumber migration and back-projection algorithms," Journal of Applied Remote Sensing, Vol. 7, 073483, 2013.
doi:10.1117/1.JRS.7.073483