1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, Vol. 11, Wiley, 1991.
2. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, Vol. 1, No. 1, 6-43, 2013.
doi:10.1109/MGRS.2013.2248301
3. Massonnet, D. and J. C. Souyris, Imaging with Synthetic Aperture Radar, EPFL Press, 2008.
doi:10.1201/9781439808139
4. Lee, J. S., "Digital image enhancement and noise filtering by use of local statistics," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 2, 165-168, 1980.
doi:10.1109/TPAMI.1980.4766994
5. Kuan, D. T., A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, 165-177, 1985.
doi:10.1109/TPAMI.1985.4767641
6. Frost, V. S., J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, "A model for radar images and its application to adaptive digital filtering of multiplicative noise," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 4, No. 2, 157-166, 1982.
doi:10.1109/TPAMI.1982.4767223
7. Lopes, A., R. Touzi, and E. Nezry, "Adaptive speckle filters and scene heterogeneity," IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 6, 992-1000, 1990.
doi:10.1109/36.62623
8. Lopes, A., E. Nezry, R. Touzi, and H. Laur, "Structure detection and statistical adaptive speckle filtering in SAR images," International Journal of Remote Sensing, Vol. 14, No. 9, 1735-1758, 1993.
doi:10.1080/01431169308953999
9. Bioucas-Dias, J. M. and M. A. Figueiredo, "Multiplicative noise removal using variable splitting and constrained optimization," IEEE Transactions on Image Processing, Vol. 19, No. 7, 1720-1730, 2010.
doi:10.1109/TIP.2010.2045029
10. Xu, B., Y. Cui, Z. Li, B. Zuo, J. Yang, and J. Song, "Patch ordering-based SAR image despeckling via transform-domain filtering," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 4, 1682-1695, 2014.
doi:10.1109/JSTARS.2014.2375359
11. Sabanci, K., E. Yigit, A. Toktas, and A. Kayabasi, "A Hue-domain filtering technique for enhancing spatial sampled compressed sensing-based SAR images," IET Radar, Sonar & Navigation, Vol. 13, No. 3, 357-367, 2019.
doi:10.1049/iet-rsn.2018.5210
12. Ozcan, C., B. Sen, and F. Nar, "Sparsity-driven despeckling for SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 1, 115-119, 2015.
doi:10.1109/LGRS.2015.2499445
13. Feng, W., G. Nico, and M. Sato, "GB-SAR interferometry based on dimension-reduced compressive sensing and multiple measurement vectors model," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 1, 70-74, 2018.
doi:10.1109/LGRS.2018.2866600
14. Borcea, L. and I. Kocyigit, "A multiple measurement vector approach to synthetic aperture radar imaging," SIAM Journal on Imaging Sciences, Vol. 11, No. 1, 770-801, 2018.
doi:10.1137/17M1142065
15. Potter, L. C., E. Ertin, J. T. Parker, and M. Cetin, "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526
16. Liu, S., J. Zhang, J. Liu, and Q. Yin, "l1/2,1 group sparse regularization for compressive sensing," Signal, Image and Video Processing, Vol. 10, No. 5, 861-868, 2016.
doi:10.1007/s11760-015-0829-6
17. Scarnati, T. and A. Gelb, "Accelerated variance based joint sparsity recovery of images from fourier data," arXiv preprint arXiv:1910.08391, 2019.
18. Gelb, A. and T. Scarnati, "Reducing effects of bad data using variance based joint sparsity recovery," Journal of Scientific Computing, Vol. 78, No. 1, 94-120, 2019.
doi:10.1007/s10915-018-0754-2
19. Güven, H. E., A. Güngör, and M. Cetin, "An augmented Lagrangian method for complex-valued compressed SAR imaging," IEEE Transactions on Computational Imaging, Vol. 2, No. 3, 235-250, 2016.
doi:10.1109/TCI.2016.2580498
20. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," Journal of Fourier Analysis and Applications, Vol. 14, No. 5, 877-905, 2008.
doi:10.1007/s00041-008-9045-x
21. Giles, D., "The majorization minimization principle and some applications in convex optimization,", Thesis, 2015, doi: 10.15760/honors.175.
22. Archibald, R., A. Gelb, and R. B. Platte, "Image reconstruction from undersampled Fourier data using the polynomial annihilation transform," Journal of Scientic Computing, Vol. 67, No. 2, 432-452, 2016.
doi:10.1007/s10915-015-0088-2
23. Wang, Y., J. Yang, W. Yin, and Y. Zhang, "A new alternating minimization algorithm for total variation image reconstruction," SIAM Journal on Imaging Sciences, Vol. 1, No. 3, 248-272, 2008.
doi:10.1137/080724265
24. Duersch, M. I. and D. G. Long, "Analysis of time-domain back-projection for stripmap SAR," International Journal of Remote Sensing, Vol. 36, No. 8, 2010-2036, 2015.
doi:10.1080/01431161.2015.1030044
25. Ponmani, E. and P. Saravanan, "Image denoising and despeckling methods for SAR images to improve image enhancement performance: A survey," Multimedia Tools and Applications, Vol. 80, No. 17, 26547-26569, 2021.
doi:10.1007/s11042-021-10871-7
26. Yigit, E., S. Demirci, C. Ozdemir, and M. Tekbas, "Short-range ground-based synthetic aperture radar imaging: Performance comparison between frequency-wavenumber migration and back-projection algorithms," Journal of Applied Remote Sensing, Vol. 7, 073483, 2013.
doi:10.1117/1.JRS.7.073483