
Progress In Electromagnetics Research M, Vol. 117, 37–46, 2023
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Abstract—High resolution Synthetic Aperture Radar (SAR) images are affected by speckle noise,
which considerably reduces their visibility and complicates the target identification. In this paper,
a new Compressive Sensing (CS) method is proposed to reduce the speckle noise effects of complex
valued SAR images. The sparsity of the SAR images allows solving the CS problem using Multiple
Measurements Vector (MMV) configuration. Therefore, a special weighted norm is constructed to solve
the optimization problem, so that the Variance-Based Joint Sparsity (VBJS) model is used to calculate
the weights. An efficient Alternating Direction Method of Multipliers (ADMM) is developed to solve
the optimization problem. The obtained results using raw complex-valued measurements with ground
truth demonstrate the effectiveness of the proposed despeckling method in terms of both image quality
and computational cost.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) system is an important remote sensing tool capable of generating
high resolution images of ground targets [1, 2]. However, the so-called speckle which is a multiplicative-
noise-like phenomenon highly affects the acquired SAR images [3]. Considerable importance is given
to speckle reduction, by exploiting many algorithms to preserve the final image resolution as much
as possible. Among these algorithms, many classical filters have been widely applied, including:
Lee [4], Kuan et al. [5], Frost et al. [6], and the Gamma Maximum A Posteriori (MAP) filter [7, 8].
Furthermore, the Multiplicative Image Despeckling by Augmented Lagrangian (MIDAL) [9] and the
Patch Ordering-based via Transform-Domain [10] filters (POTDFs) have been applied to improve the
filtering robustness. Recently, Compressive Sensing (CS) algorithms have been successfully applied to
SAR images despeckling and reconstruction [11, 12]. SAR image usually exhibits sparsity in terms of
such features, which motivates the SAR model formulation as a CS problem.

CS-based methods are mostly considered in the literature as an inverse problem. The matrix
formulation is employed, which unfortunately requires large computational resources. Therefore, the
sparsity of SAR scenes with multi-frequency points encourages the formulation of the CS problem in
a Multiple Measurements Vector (MMV) setup [13]. MMV is an extension of single measurements
vector, which deals with the restoration of sparse signal vectors having a common support. In [14],
MMV methodology is investigated to estimate the reflectivity matrix by assuming that the scatterers
are represented in the row support of the image domain, and the columns represent the different values
of reflectivity corresponding to the frequency band, polarization, and sub-aperture. It has been shown
in [15] that the reconstruction can be achieved by considering a general lp-norm minimization. However,
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optimal recovery of the sparse images requires an Nondeterministic Polynomial (NP)-complex l0-norm
minimization problem. Therefore, great importance has been given to construct an efficient group
sparse regularization as in [16], where the authors proposed an l1/2,1 regularization to overcome the
shortcomings of the l1,2 and l1,∞ in a CS framework. Recently, the Variance Based Joint Sparsity
(VBJS) has been investigated in many reconstruction problems [17, 18].

This paper proposes a new CS-based algorithm by considering the MMV model. The minimization
problem is formulated using an iterative re-weighted mixed l2,1-norm. The weights are calculated as
in [18] by considering the variance information between multiple measurements. The optimization
problem is solved using the Alternating Direction Method of Multipliers (ADMM) [19].

The rest of this paper is organized as follows. Section 2 gives the problem modeling. Section 3 is
devoted to the experimental setup. Section 4 presents the obtained results. Section 5 concludes the
paper.

2. PROBLEM MODELING

The observation model for a SAR imaging system can be expressed as

Y = ΨX +B (1)

where Y ∈ CZR×1, Ψ ∈ CZR×MN , X ∈ CMN×1, B ∈ CZR×1. Y is the radar backscattered signal, Ψ
the observation matrix, X the reflectivity, B the system noise, MN the size of the imaged scene, and
Z, R are the number of azimuth and range samples, respectively.

The reflectivity X for SAR image can be written as

X =
√
x⊙ n (2)

where
√
x is the SAR image amplitude, n ∈ CMN×1 the speckle noise, and ⊙ the element-wise

multiplication.
The speckle intensity can be modeled by a Gamma distribution as follows

pn (n) = LL 1

Γ (L)
nL−1 exp (−Ln) (3)

where L is the number of looks.
In the CS framework, the radar backscattered signal Y is compressed with a matrix Φ ∈ CZR×s,

with s ≪ MN . So Equation (1) can be rewritten as follows

Y = ΦΨX +B (4)

The matrix A = ΦΨ satisfies the Restricted Isometry Property (RIP) conditions, and the SAR scene is
sparse, so the unknown reflectivity can be recovered using l1-norm regularization by solving the following
optimization problem

min
X

∥AX − Y ∥2F + α ∥X∥1 (5)

where α is a sparsity balancing term.
As the SAR data is arranged in a matrix, the rows of the unknown reflectivity X correspond to

the scatterers positions and the columns to the measurements. Since the scene is sparse, the problem
can be formulated as an MMV joint sparse recovery.

In this work, the mixed l2,1-norm instead of l1-norm is proposed, and the new problem formulation
can be expressed as

min
X

∥AX − Y ∥2F + α ∥X∥2,1 (6)

In [20], a log-sum penalty is used to relax the l0-norm to overcome the l1 penalty problem, where the
large magnitudes are highly penalized compared to small ones. Equation (6) can be expressed as

min
X

∥AX − Y ∥2F + α

N∑
i=1

log (zi + ε)

s.t ∥xi∥2 ≤ zi, ∀i ∈ N

(7)
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The log term is concave and can be approximated by its first Taylor expansion using the Majorization
Minimization (MM) approach [21]. For that, an iteratively re-weighted formulation of the optimization
problem is given by

X(t+1) = min
X

∥AX − Y ∥2F + α

N∑
i=1

w
(t)
i ∥xi∥2 (8)

where w(t) denotes the vector of weights at the (t)th MM iteration. The vector w is evaluated as in [18]
by taking into account the variance information between multiple measurements.

2.1. VBJS Weights Formulation

The variance vector is given as follows

υi =
1

J

J∑
j=1

P 2
i,j −

 1

J

J∑
j=1

Pi,j

2

(9)

where J is the number of measurements and P the vector containing the sparsity information of all
measurements represented by

P =
[
TX(1) TX(2) ... TX(J)

]
(10)

The transform T , defined by a Polynomial Annihilation (PA) operator [22], has been used to approximate
the sparse image domain. By normalizing the magnitudes of each column’s vector elements in matrix
P , the vector form can be expressed as follows

P̃i,j =
|Pi,j |

max |Pi,j |
, j = 1, ..., J, i = 1, ..., N (11)

A scalar weighting is defined and constructed by averaging the l1-norm of each P column to avoid
the manual tuning of parameters. It can be written as

C =
1

J

J∑
j=1

N∑
i=1

P̃i,j (12)

The weight vector can be calculated using Equations (9), (11), and (12) as

wi =


C

(
1− υi

max υi

)
, i /∈ I

1

C

(
1− υi

max υi

)
, i ∈ I

(13)

The interval I is selected by comparing the normalized vector mean of measurements P̃ over all
measurements J with a threshold τ , which depends on the noise level as follows

1

J

J∑
j=1

P̃i,j ≻ τ (14)

2.2. ADMM Solution

The optimization problem in Equation (8) is solved by an ADMM algorithm. The augmented Lagrangian
of Equation (8) can be written as follows

min
X,Z

α

N∑
i=1

w
(t)
i ∥xi∥2 + ∥AZ − Y ∥2F +

ρ

2

∥∥∥∥X − Z +
λ

ρ

∥∥∥∥2
F

−
∥λ∥2F
2ρ

(15)
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The auxiliary variable Z ∈ CMN and Lagrange multiplier λ ∈ CMN are introduced in the Lagrangian
formulation. The positive parameter ρ is used to penalize the Frobenius norm quadratic terms.

The ADMM iteration is used to minimize the Lagrangian in (15) with respect to the X, Z, and the
updates of the Lagrange multiplier λ are given by the following equations (with k denotes the ADMM
iteration index). 

Z(k+1) = min
Z

L
(
Z,X(k), λ(k)

)
X(k+1) = min

X
L
(
Z(k+1), X, λ(k)

)
λ(k+1) = λ(k) + ρ

(
X(k+1) − Z(k+1)

)
The optimization problem can be performed by separately solving the following sub-problems.

2.2.1. Z-Subproblem

Fixing X(k) and λ(k), Equation (15) can be transformed into

Z(k+1) = min
Z

∥AZ − Y ∥2F +
ρ

2

∥∥∥∥∥X(k) − Z +
λ(k)

ρ

∥∥∥∥∥
2

F

(16)

Since the objective function of Z is strictly convex, Equation (16) has a unique solution obtained by
calculating the gradient with respect to Z and setting the result to zero

Z(k+1) =
(
ATA∗ + ρIN

)−1
(
ρX(k) + λ(k) + Y TA∗

)
(17)

where (·)T and (·)∗ denote the transpose and complex conjugate operators, respectively.

2.2.2. X-Subproblem

Fixing Z(k+1) and λ(k), Equation (15) can be transformed into

X(k+1) = min
X

α
N∑
i=1

w
(t)
i ∥xi∥2 +

ρ

2

∥∥∥∥∥X − Z(k+1) +
λ(k)

ρ

∥∥∥∥∥
2

F

(18)

The values of X in Equation (18) can be updated by splitting the problem into N sub-problems

x
(k+1)
i = min

xi

αw
(t)
i

ρ
∥xi∥2 +

1

2

∥∥∥∥∥xi − z
(k+1)
i +

λ
(k)
i

ρ

∥∥∥∥∥
2

2

(19)

The X sub-problem admits a closed-form solution. In particular, this solution is given by the
shrinkage operator [23] as follows

x
(k+1)
i = max

{∥∥∥∥∥z(k+1)
i −

λ
(k)
i

ρ

∥∥∥∥∥
2

−
αw

(t)
i

ρ
, 0

}
×

z
(k+1)
i −

λ
(k)
i

ρ∥∥∥∥∥z(k+1)
i −

λ
(k)
i

ρ

∥∥∥∥∥
2

(20)

Finally, the Lagrange multiplier λ is updated as follows:

λ(k+1) = λ(k) + ρ
(
X(k+1) − Z(K+1)

)
(21)

The details to solve the ADMM solution are given by Algorithm 1.
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3. EXPERIMENTAL SETUP

The experimental setup shown in Figure 1 has been realized at the Radar Laboratory of the Military
Polytechnic School of Algeria. The system configuration consists of a Vector Network Analyzer (VNA)
operating within X band (8–12GHz) and generates stepped frequency continuous wave signals. The
VNA is connected to the transmitting-receiving patch antennas, which are felted by an angle of 45◦

toward the imaged scene. The antennas are positioned at a height of 1.35m, which move in the cross-
range direction using rail scanner with a step of 1.5 cm. For all the 61 equally spaced positions, the phase
history data is collected. The quality of the despeckled SAR image is measured using the Peak Signal
to Noise Ratio (PSNR) with different values of PA operator order. For this purpose, the robustness
of the filtering process was analyzed through the variation of the PA operator. As shown in Figure 2,
PA = 3 provides the maximum PSNR for the minimum number of iterations. This value is used in our
despeckling process.

Figure 1. Experimental setup. Figure 2. PSNR for different values of PA
operator order.
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For CS parameters, a random frequency sampling is performed for each cross-range position to
reduce the amount of data processing. For the two conducted experiments, 240 frequency bins are
taken out of 1602, which corresponds to approximately only 15% of the total frequency bins. Moreover,
the sparsity balancing term α is set to 7× 10−3 for the first experiment and 10−3 for the second one.

4. EXPERIMENTAL RESULTS

To demonstrate the despeckling accuracy of the proposed algorithm, the results of two experiments are
summarized in this section.

4.1. First Experiment

Figure 3 shows the first imaged scene composed by a layer of sand with five identical corner reflectors.
Figure 3(c) shows the obtained result using the Time Domain Back-projection Algorithm TDBPA [24].
It can be seen that the corner reflectors responses are dominant causing a strong interference and a
visible speckle noise distributed in the entire surface. Figure 3(d) shows that the reconstructed image
using the proposed algorithm is noiseless while the high resolution is presented. Moreover, all the targets
are successfully reconstructed in their exact positions.

(a)

(b) (c) (d)

Figure 3. (a) First imaged scene. (b) Geometrical illustration of the scene. (c) Focused image by
TDBPA. (d) Reconstructed image by the proposed algorithm.

4.2. Second Experiment

In this experiment, as shown in Figure 4, other targets are introduced with different radar cross section
values. It can be observed in Figure 4(c) that the four dominant corner reflectors create a strong
interferences which almost covers the other targets. The reconstructed image by the proposed method
in Figure 4(d) shows that all targets are successfully recovered from noise, despite the weak radar
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(a)

(b) (c) (d)

Figure 4. (a) Second imaged scene. (b) Geometrical illustration of the scene. (c) Focused image by
TDBPA. (d) Reconstructed image by the proposed algorithm.

backscattering of the gravel surface and the two metallic balls. The introduced variance based weights
wi have perfectly contributed to the low-intensity edges restoration while reducing considerably the
speckle.

4.3. Comparative Study

The second experiment is selected to perform the comparison with the following filtering algorithms:
Kuan [5], Frost [6], MIDAL [9], and POTDF [10]. The despeckling results are obtained with selecting
the best parameters for each algorithm as shown in Figure 5. It can be seen by visual perception in
Figures 5(b) and 5(e) that Kuan and POTDF filters over-smooth both speckle noise and targets signals.

Moreover, resulting edges and contours are blurred and not well preserved. However, Frost and
MIDAL filters (Figures 5(c) and 5(d)) perform better and provide more sharp edges. Figure 5(f) shows
that our proposed algorithm efficiently suppress speckle noise while maintaining all the imaged targets.

Table 1. Quantitative metrics of despeckling methods applied to the second imaged scene.

Parameters

Method ENL SSIM PSNR RMSE

Kuan 0.24 0.21 18.92 1.68

Frost 0.52 0.47 22.30 1.41

MIDAL 0.46 0.39 20.23 1.51

POTDF 0.28 0.23 19.20 1.62

Proposed 2.82 0.75 24.98 1.26
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(a) (b) (c)

(d) (e) (f)

Figure 5. Despeckling results of second experiment. (a) Focused image by TDBPA, (b) Kuan, (c)
Frost, (d) MIDAL, (e) POTDF, (f) proposed.

Table 2. ISLR values of the second imaged scene.

Full data (100%) 45% of data 35% of data 15% of data

ISLR [dB] −32.21 −30.52 −28.22 −17.65

The obtained results are evaluated using diverse quantitative metrics: Equivalent Number of
Looks (ENL), Structural Similarity Index (SSIM), PSNR, and Root Mean Square Error (RMSE) [25].
According to Table 1, the best ENL value is achieved by our algorithm showing both high speckle
reduction capability and radiation characteristics preservation. Note that the original noisy image has
an ENL = 0.16. Our method outperforms the other methods in terms of SSIM which measures the
similarity between the filtered image and the original one. Moreover, our algorithm provides higher
PSNR value (equivalently, lower RMSE), which means better speckle reduction. Another criterion
which is the integrated side lobe ratio (ISLR) is exploited to assess the effectiveness of CS based imaging
algorithm. ISLR can be described by the ability of side lobe suppression which is defined as the ratio
of the power (or energy) in the main peak to the total power in all side lobes [26]. In Table 2, the
ISLR is calculated for different values of frequency sampled data. The best result is achieved for the
measurements which correspond to 15% of the whole data.
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5. CONCLUSION

In this paper, an efficient CS-based algorithm is proposed within the MMV paradigm to deal with
the speckle noise removal problem. The regularization by the mixed l2,1 norm is considered for the
proposed optimization problem. The considered regularizer is weighted iteratively by the vector of
variance calculated with the adopted VBJS method. Therefore, the solution of the convex optimization
problem is performed using the ADMM algorithm. Experimental results, using raw complex-valued
data, have shown the efficiency of the proposed algorithm in terms of speckle removing, high quality
reconstruction, and reduced computational burden.
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19. Güven, H. E., A. Güngör, and M. Cetin, “An augmented Lagrangian method for complex-valued
compressed SAR imaging,” IEEE Transactions on Computational Imaging, Vol. 2, No. 3, 235–250,
2016.

20. Candes, E. J., M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted l1 minimization,”
Journal of Fourier Analysis and Applications, Vol. 14, No. 5, 877–905, 2008.

21. Giles, D., “The majorization minimization principle and some applications in convex optimization,”
Thesis, 2015, doi: 10.15760/honors.175.

22. Archibald, R., A. Gelb, and R. B. Platte, “Image reconstruction from undersampled Fourier data
using the polynomial annihilation transform,” Journal of Scientific Computing, Vol. 67, No. 2,
432–452, 2016.

23. Wang, Y., J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total
variation image reconstruction,” SIAM Journal on Imaging Sciences, Vol. 1, No. 3, 248–272, 2008.

24. Duersch, M. I. and D. G. Long, “Analysis of time-domain back-projection for stripmap SAR,”
International Journal of Remote Sensing, Vol. 36, No. 8, 2010–2036, 2015.

25. Ponmani, E. and P. Saravanan, “Image denoising and despeckling methods for SAR images to
improve image enhancement performance: A survey,” Multimedia Tools and Applications, Vol. 80,
No. 17, 26547–26569, 2021.

26. Yigit, E., S. Demirci, C. Ozdemir, and M. Tekbas, “Short-range ground-based synthetic aperture
radar imaging: Performance comparison between frequency-wavenumber migration and back-
projection algorithms,” Journal of Applied Remote Sensing, Vol. 7, 073483, 2013.


