Vol. 114
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-11-23
Electromagnetic Scattering from 2-d Conducting Objects with Arbitrary Smooth Shape: Complete Mathematical Formulation of the Method of Auxiliary Sources for E-Polarized Case
By
Progress In Electromagnetics Research M, Vol. 114, 117-125, 2022
Abstract
The study investigates the mathematical background of the method of auxiliary sources (MAS) employed in electromagnetic diffraction. Here, the mathematical formulation is developed for E-polarized plane wave diffraction by perfectly conducting two-dimensional objects of arbitrary smooth shape, and the comparison with an analytical and a numerical approach is provided in the numerical part. The results reveal a quite high accuracy among all methods. The importance of the study is to develop the complete mathematical background of MAS for two-dimensional TM-polarized electromagnetic scattering problems by conducting objects. Different from the method of moments (MoM) and other integral equation approaches in electromagnetic scattering problems, here the integral equation resulting from the boundary condition on the scatterer is solved by expanding the current density as orthonormalized Hankel's function with the argument of the distance between the scatterer actual and auxiliary surfaces. The approach can be summarized by that first the sources are shifted inside the scatterer and second, the boundary condition is employed as the total tangential electric field is zero on the surface and inside the object. Then, such expansion leads to eliminating the singularity problems by shifting the sources from the actual surface.
Citation
Vasil Tabatadze, Kamil Karaçuha, and Revaz Zaridze, "Electromagnetic Scattering from 2-d Conducting Objects with Arbitrary Smooth Shape: Complete Mathematical Formulation of the Method of Auxiliary Sources for E-Polarized Case," Progress In Electromagnetics Research M, Vol. 114, 117-125, 2022.
doi:10.2528/PIERM22101003
References

1. Karacuha, K., "General approach to the line source electromagnetic scattering by a circular strip: Both E- and H-polarisation cases," IET Microwaves, Antennas Propag., 2021.

2. Sefer, A. and A. Yapar, "Inverse scattering by Perfectly Electric Conducting (PEC) rough surfaces: An equivalent model with line sources," IEEE Trans. Geosci. Remote Sens., Vol. 60, 2022.

3. Sever, E., Y. A. Tuchkin, and F. Dikmen, "On a superalgebraically converging, numerically stable solving strategy for electromagnetic scattering by impedance cylinders," J. Comput. Electron., Vol. 17, No. 1, 427-435, 2018.
doi:10.1007/s10825-017-1073-9

4. Dogan, M., F. Dikmen, and A. Alkumru, "Line source diffraction by perfectly conducting successive steps," Wave Motion, Vol. 68, 253-271, 2017.
doi:10.1016/j.wavemoti.2016.10.004

5. Yildiz, G., et al., "Antenna excitation optimization with deep learning for microwave breast cancer hyperthermia," Sensors, Vol. 22, No. 17, 6343, 2022.
doi:10.3390/s22176343

6. Jeladze, V. B., M. M. Prishvin, V. A. Tabatadze, I. M. Petoev, and R. S. Zaridze, "Application of the method of auxiliary sources to study the in uence of resonance electromagnetic fields on a man in large spatial domains," J. Commun. Technol. Electron., Vol. 62, No. 3, 195-204, 2017.
doi:10.1134/S1064226917030093

7. Tabatadze, V., R. Zaridze, I. Petoev, B. Phoniava, and T. Tchabukiani, "Application of the method of auxiliary sources in the 3D antenna synthesis problems," 2015 XXth IEEE International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 85-89, 2015.
doi:10.1109/DIPED.2015.7324261

8. Prishvin, M., L. Bibilashvili, V. Tabatadze, and R. Zaridze, "Supplementary analysis of RF exposure simulations of low-power transmitters," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 1, 58-69, 2011.

9. Tabatadze, V., K. Karacuha, E. Veliyev, E. Karacuha, and R. Zaridze, "The electric field calculation for mobile communication coverage in buildings and indoor areas by using the method of auxiliary sources," Complexity, Vol. 2020, 4563859, 2020.

10. Tabatadze, V., K. Karacuha, E. Karacuha, and R. Zaridze, "Simple approach to determine the buried object under the ground," 2021 IEEE 26th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 177-180, 2021.

11. Kupradze, V. D. and M. A. Aleksidze, "The method of functional equations for the approximate solution of certain boundary value problems," USSR Comput. Math. Math. Phys., Vol. 4, No. 4, 82-126, 1964.
doi:10.1016/0041-5553(64)90006-0

12. Kupradze, V. D., "On the approximate solution of problems in mathematical physics," Russ. Math. Surv., Vol. 22, No. 2, 58, 1967.
doi:10.1070/RM1967v022n02ABEH001210

13. Zaridze, R. S., R. Jobava, G. Bit-Banik, D. Karkasbadze, D. P. Economou, and N. K. Uzunoglu, "The method of auxiliary sources and scattered field singularities (caustics)," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 11, 1491-1507, 1998.
doi:10.1163/156939398X00430

14. Zaridze, R., G. Bit-Babik, K. Tavzarashvili, N. K. Uzunoglu, and D. Economou, "The Method of Auxiliary Sources (MAS) --- Solution of propagation, diffraction and inverse problems using MAS," Applied Computational Electromagnetics, 33-45, Springer, 2000.
doi:10.1007/978-3-642-59629-2_3

15. Zaridze, R. S., V. A. Tabatadze, I. M. Petoev-Darsavelidze, and G. V. Popov, "Determination of the location of field singularities using the method of auxiliary sources," J. Commun. Technol. Electron., Vol. 64, No. 11, 1170-1178, 2019.
doi:10.1134/S1064226919110263

16. Jeladze, V., M. Tsverava, T. Nozadze, V. Tabatadze, M. Prishvin, and R. Zaridze, "EM exposure study on an inhomogeneous human model considering different hand positions," 2016 XXIst International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 9-12, 2016.
doi:10.1109/DIPED.2016.7772197

17. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1999.

18. Sebak, A. and L. Shafai, "Generalized solutions for electromagnetic scattering by elliptical structures," Comput. Phys. Commun., Vol. 68, No. 1-3, 315-330, 1991.
doi:10.1016/0010-4655(91)90206-Z

19. Gibson, K., "The ovals of Cassini," Lect. Notes, 2007.