Vol. 114
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-11-15
Scattering from a 90° Metallic Wedge with One Face Coated by a Double Negative Metamaterial Layer
By
Progress In Electromagnetics Research M, Vol. 114, 79-89, 2022
Abstract
This manuscript refers to the electromagnetic scattering problem involving plane waves at skew incidence with respect to the edge of a right-angled metallic wedge having one face coated by a double negative metamaterial sheet. Its presence in the propagation scenario is properly accounted at high frequencies by considering the geometrical optics response of the structure and the diffraction contribution arising from the edge of the wedge. In particular, the reflection coefficients related to the coated surface are determined for both the polarizations by using the equivalent transmission line circuit, whereas the diffraction coefficients are obtained by applying the uniform asymptotic physical optics approach. This last is based on electric and magnetic equivalent surface currents under the physical optics approximation and permits to evaluate the diffraction contribution in the context of the uniform geometrical theory of diffraction. The resulting approximate solution is characterized by the same simplicity of use of the heuristic solutions and provides reliable field values as confirmed by the numerical tests carried out by a full-wave commercial software.
Citation
Giovanni Riccio, Gianluca Gennarelli, Flaminio Ferrara, Claudio Gennarelli, and Rocco Guerriero, "Scattering from a 90° Metallic Wedge with One Face Coated by a Double Negative Metamaterial Layer," Progress In Electromagnetics Research M, Vol. 114, 79-89, 2022.
doi:10.2528/PIERM22092704
References

1. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley & Sons, 2006.

2. Sakoda, K., Electromagnetic Metamaterials: Modern Insights into Macroscopic Electromagnetic Fields, Springer, 2019.

3. Marquéz, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley & Sons, 2008.

4. Basdemir, H. D., "Scattering of plane waves by a rational half-plane between DNG media," Optik, Vol. 179, 47-53, 2019.
doi:10.1016/j.ijleo.2018.10.113

5. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

6. Tiberio, R., G. Pelosi, and G. Manara, "A uniform GTD formulation for the diffraction by a wedge with impedance faces," IEEE Trans. Antennas Propag., Vol. 33, 867-873, 1985.
doi:10.1109/TAP.1985.1143687

7. Senior, T. B. A. and J. L. Volakis, "Scattering by an imperfect right-angled wedge," IEEE Trans. Antennas Propag., Vol. 34, 681-689, 1986.
doi:10.1109/TAP.1986.1143864

8. Rojas, R. G., "Electromagnetic diffraction of an obliquely incident plane wave field by a wedge with impedance faces," IEEE Trans. Antennas Propag., Vol. 36, 956-970, 1988.
doi:10.1109/8.7201

9. Syed, H. H. and J. L. Volakis, "An approximate solution for scattering by an impedance wedge at skew incidence," Radio Sci., Vol. 3, 505-524, 1995.
doi:10.1029/94RS03015

10. Osipov, A. V. and T. B. A. Senior, "Diffraction by a right-angled impedance wedge," Radio Sci., Vol. 43, RS4S02, 2008.
doi:10.1029/2007RS003787

11. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, IEE, 1995.
doi:10.1049/PBEW041E

12. Daniele, V. G. and G. Lombardi, "Wiener-Hopf solution for impenetrable wedges at skew incidence," IEEE Trans. Antennas Propag., Vol. 54, 2472-2485, 2006.
doi:10.1109/TAP.2006.880723

13. Lyalinov, M. A. and N. Y. Zhu, "Diffraction of a skew incident plane electromagnetic wave by an impedance wedge," Wave Motion, Vol. 44, 21-43, 2006.
doi:10.1016/j.wavemoti.2006.06.005

14. Holm, P. D., "A new heuristic UTD diffraction coefficient for nonperfectly conducting wedge," IEEE Trans. Antennas Propag., Vol. 48, 1211-1219, 2000.
doi:10.1109/8.884489

15. El-Sallabi, H. M. and P. Vainikainen, "Improvements to diffraction coefficient for non-perfectly conducting wedges," IEEE Trans. Antennas Propag., Vol. 53, 3105-3109, 2005.
doi:10.1109/TAP.2005.854534

16. Nechayev, Y. I. and C. C. Constantinou, "Improved heuristic diffraction coefficients for an impedance wedge at normal incidence," IEE Proc. - Microw. Antennas Propag., Vol. 153, 125-132, 2006.
doi:10.1049/ip-map:20045150

17. Basdemir, H. D., "Diffraction by a right angle impedance wedge between left- and right-handed media," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 7, 869-880, 2020.
doi:10.1080/09205071.2020.1759460

18. Gennarelli, G. and G. Riccio, "Diffraction by a planar metamaterial junction with PEC backing," IEEE Trans. Antennas Propag., Vol. 58, 2903-2908, 2010.
doi:10.1109/TAP.2010.2052581

19. Ferrara, F., C. Gennarelli, R. Guerriero, G. Riccio, and C. Savarese, "A UAPO diffraction contribution to take into account the edge effects in microstrip reflectarrays," Electromagn., Vol. 26, 461-471, 2006.
doi:10.1080/02726340600837925

20. Gennarelli, G. and G. Riccio, "A uniform asymptotic solution for diffraction by a right-angled dielectric wedge," IEEE Trans. Antennas Propag., Vol. 59, 898-903, 2011.
doi:10.1109/TAP.2010.2103031

21. Gennarelli, G. and G. Riccio, "Plane-wave diffraction by an obtuse-angled dielectric wedge," J. Opt. Soc. Am. A, Vol. 28, 627-632, 2011.
doi:10.1364/JOSAA.28.000627

22. Gennarelli, G. and G. Riccio, "Useful solutions for plane wave diffraction by dielectric slabs and wedges," Int. J. Antennas Propag., 1-7, 2012.

23. Gennarelli, G. and G. Riccio, "Diffraction by 90˚ penetrable wedges with finite conductivity," J. Opt. Soc. Am. A, Vol. 31, 21-25, 2014.
doi:10.1364/JOSAA.31.000021

24. Gennarelli, G., M. Frongillo, and G. Riccio, "High-frequency evaluation of the field inside and outside an acute-angled dielectric wedge," IEEE Trans. Antennas Propag., Vol. 63, 374-378, 2015.
doi:10.1109/TAP.2014.2364305

25. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a structure composed of metallic and dielectric 90˚ blocks," IEEE Antennas Wireless Propag. Lett., Vol. 17, 881-885, 2018.
doi:10.1109/LAWP.2018.2820738

26. Frongillo, M., G. Gennarelli, and G. Riccio, "Plane wave diffraction by arbitrary-angled lossless wedges: High-frequency and time-domain solutions," IEEE Trans. Antennas Propag., Vol. 66, 6646-6653, 2018.
doi:10.1109/TAP.2018.2876602

27. Frongillo, M., G. Gennarelli, and G. Riccio, "Diffraction by a dielectric wedge on a ground plane," Progress In Electromagnetics Research M, Vol. 82, 9-18, 2019.
doi:10.2528/PIERM19030601

28. Gennarelli, G. and G. Riccio, "On the accuracy of the UAPO solution for the diffraction by a PEC - DNG metamaterial junction," IEEE Antennas Wireless Propag. Lett., Vol. 19, 581-585, 2020.
doi:10.1109/LAWP.2020.2972308

29. Gennarelli, G. and G. Riccio, "High-frequency diffraction contribution by planar metallic - DNG metamaterial junctions," Int. J. Microw. Wireless Tech., 1-6, 2020.

30. Frongillo, M., G. Gennarelli, and G. Riccio, "Useful solutions for the plane wave diffraction by a configuration of dielectric and metallic acute-angled wedges," Int. J. Comm. Antenna Propag., Vol. 10, 68-75, 2020.

31. Meana, J. G., J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, "Wave scattering by dielectric and lossy materials using the modified equivalent current approximation (MECA)," IEEE Trans. Antennas Propag., Vol. 58, 3757-3760, 2010.
doi:10.1109/TAP.2010.2071363

32. Meana, J. G., J. A. Martinez-Lorenzo, and F. Las-Heras, "High frequency techniques: The physical optics approximation and the modified equivalent current approximation (MECA)," Electromagnetic Waves Propagation in Complex Matter, 207-230, A. Kishk (ed.), Intech, Croatia, 2011.

33. Clemmow, P. C., The Plane Wave Spectrum Representation of Electromagnetic Fields, Oxford University Press, 1996.
doi:10.1109/9780470546598

34. Maliuzhinets, G. D., "Inversion formula for the Sommerfeld integral," Soviet Physics Doklady, Vol. 3, 52-56, 1958.