Vol. 115
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-01-07
Statistics of Two Indicators for Multilook Scattering Signals from Multilayered Structures with Slightly Rough Interfaces
By
Progress In Electromagnetics Research M, Vol. 115, 11-20, 2023
Abstract
Within the framework of the first-order small perturbation method, we derive the statistics of the layered rough surface index and the normalized difference polarization index for three-dimensional layered structure with slightly rough interfaces illuminated by a monochromatic plane wave and for multilook returns. We establish closed-form expressions for the probability density function and the cumulative distribution function. The first- and second-order moments are given by relation recurrences. We validate from Monte Carlo simulations the obtained theoretical formulas.
Citation
Richard Dusséaux, and Saddek Afifi, "Statistics of Two Indicators for Multilook Scattering Signals from Multilayered Structures with Slightly Rough Interfaces," Progress In Electromagnetics Research M, Vol. 115, 11-20, 2023.
doi:10.2528/PIERM22092006
References

1. Kong, J. A., A. A. Swartz, H. A. Yueh, L. M. Novak, and R. T. Shin, "Identification of terrain cover using the optimum polarimetric classifier," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 2, 171-194, 1988.

2. Lee, J. S., K. W. Hoppel, S. A. Mango, and A. R. Miller, "Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery," IEEE Trans. Geosci. Remote Sensing, Vol. 32, No. 5, 1017-1028, Sep. 1994.
doi:10.1109/36.312890

3. Joughin, I. R., D. P. Winebrenner, and D. B. Percival, "Probability density functions for multilook polarimetric signatures," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 3, 562-574, May 1994.
doi:10.1109/36.297975

4. Afifi, S. and R. Dusséaux, "On the co-polarized scattered intensity ratio of rough layered surfaces: The probability law derived from the small perturbation method," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 2133-2138, Apr. 2012.
doi:10.1109/TAP.2012.2186258

5. Afifi, S. and R. Dusséaux, "The co- and cross-polarized scattered intensity ratios for 3D layered structures with randomly rough interfaces," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 7, 811-826, 2019.
doi:10.1080/09205071.2018.1523027

6. Dusséaux, R. and S. Afifi, "Multilook intensity ratio distribution for 3D-layered structures with slightly rough interfaces," IEEE Trans. Antennas Propag., Vol. 68, No. 7, 5575-5582, Jun. 2020.
doi:10.1109/TAP.2020.2979275

7. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from three-dimensional layered rough surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 8, 2102-2114, Aug. 2006.
doi:10.1109/TGRS.2006.872140

8. Imperatore, P., A. Iodice, and D. Riccio, "Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces," IEEE Trans. Geosc. Remote Sens., Vol. 47, No. 4, 1056-1072, Apr. 2009.
doi:10.1109/TGRS.2008.2007804

9. Lin, Z. W., X. J. Zhang, and G. Y. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.
doi:10.2528/PIER09061102

10. Berrouk, A., R. Dusséaux, and S. Afifi, "Electromagnetic wave scattering from rough layered interfaces: Analysis with the small perturbation method and the small slope approximation," Progress In Electromagnetics Research B, Vol. 57, 177-190, 2014.
doi:10.2528/PIERB13101802

11. Afifi, S., Dusséaux, and A. Berrouk, "Electromagnetic wave scattering from 3D layered structures with randomly rough interfaces: Analysis with the small perturbation method and the small slope approximation," IEEE Trans. Antennas Propagat., Vol. 62, No. 10, 5200-5208, Oct. 2014.
doi:10.1109/TAP.2014.2341704

12. Djedouani, N., S. Afifi, and R. Dusséaux, "Inversion of electrical and geometrical parameters of a stratified mediumfrom data derived from the Small Perturbation Method and the Small Slope Approximation," Progress In Electromagnetics Research B, Vol. 94, 19-36, 2021.
doi:10.2528/PIERB21071305

13. Mishra, P. and D. Singh, "Role of polarimetric indices based on statistical measures to identify various land cover classes in ALOS PALSAR data," Proc. APSAR, 1-4, Seoul, South Korea, Sep. 2011.

14. Mishra, P. and D. Singh, "A statistical-measure-based adaptive land cover classification algorithm by efficient utilization of polarimetric SAR observables," IEEE Trans. Geosc. Remote Sens., Vol. 52, No. 5, 2889-2900, Oct. 2014.
doi:10.1109/TGRS.2013.2267548

15. Afifi, S. and R. Dusséaux, "Statistical distribution of the Normalized Difference Polarization Index for 3D layered structures with slightly rough interfaces," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4291-4295, Jun. 2019.
doi:10.1109/TAP.2019.2905930

16. Dusséaux, R. and S. Afifi, "Statistical distribution of the Layered Rough Surface Index (LRSI)," Progress In Electromagnetics Research C, Vol. 94, 75-87, 2019.
doi:10.2528/PIERC19032203

17. Elfouhaily, T. M. and C. A. Guérin, "A critical survey of approximate scattering wave theories from random rough surfaces," Waves Random Media, Vol. 14, R1-R40, 2004.
doi:10.1088/0959-7174/14/4/R01

18. Tabatabaeenejad, A. and M. Moghaddam, "Study of validity region of small perturbation method for two-layer rough surfaces," IEEE Geosci. Remote Sens. Lett., Vol. 7, No. 2, 319-323, Feb. 2010.
doi:10.1109/LGRS.2009.2034543

19. Zribi, M., O. Taconet, S. Le Hégarat-Mascle, D. Vidal-Madjar, C. Emblanch, C. Loumagne, and M. Normand, "Backscattering behavior and simulation comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval," Remote Sens. Env., Vol. 59, No. 2, 256-266, 1997.
doi:10.1016/S0034-4257(96)00158-7

20. Boisvert, J. B., Q. H. J. Gwyn, A. Chanzy, D. J. Major, B. Brisco, and R. J. Brown, "Effect of surface soil moisture gradients on modelling radar backscattering from bare fields," Int. J. Remote Sens., Vol. 18, No. 1, 153-170, 1997.
doi:10.1080/014311697219330

21. Zribi, M., M. Sahnoun, N. Baghdad, T. Le Toan, and A. Ben Hamida, "Analysis of the relationship between backscattered P-band radar signals and soil roughness," Remote Sens. Env., Vol. 181, 13-21, 2016.
doi:10.1016/j.rse.2016.08.006

22. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves --- Numerical Simulations, Wiley, New-York, 2001.
doi:10.1002/0471224308

23. Dusséaux, R., E. Vannier, O. Taconet, and G. Granet, "Study of backscatter signature for seedbed surface evolution under rainfall --- Influence of radar precision," Progress In Electromagnetics Research, Vol. 125, 415-437, 2012.
doi:10.2528/PIER11102807

24. Vannier, E., O. Taconet, R. Dusséaux, and O. C. Chiadjeu, "Statistical characterization of bare soil surface microrelief," Adv. Geosci. Remote Sens., 207-228, 2014.

25. Abdi, A., H. Hashemi, and S. Nader-Esfahani, "On the PDF of the sum of random vectors," IEEE Trans. Commun., Vol. 48, No. 1, 7-12, Jan. 2000.
doi:10.1109/26.818866

26. Jakeman, E. and K. D. Ridley, Modeling Fluctuations in Scattered Waves, Taylor and Francis, New York, 2006.
doi:10.1201/9781420012163

27. Bourlier, C., N. Pinel, and G. Kubické, Method of Moments for 2D Scattering Problems: Basic Concepts and Applications, Wiley, Hoboken, NJ, USA, 2013.
doi:10.1002/9781118648674