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Statistics of Two Indicators for Multilook Scattering Signals from
Multilayered Structures with Slightly Rough Interfaces

Richard Dusséaux1, * and Saddek Afifi2

Abstract—Within the framework of the first-order small perturbation method, we derive the statistics
of the layered rough surface index and the normalized difference polarization index for three-dimensional
layered structures with slightly rough interfaces illuminated by a monochromatic plane wave and
for multilook returns. We establish closed-form expressions for the probability density function and
cumulative distribution function. The first- and second-order moments are given by relation recurrences.
We validate from Monte Carlo simulations the obtained theoretical formulas.

1. INTRODUCTION

The co- and cross-polarized intensity ratios are useful indicators in the analysis of polarimetric and
interferometric radar data [1–6]. In [4], we established the analytical expression of the probability
density function (PDF) for the scattered intensity ratios for a three-dimensional layered structure with
slightly rough interfaces illuminated by a monochromatic plane wave. The scattered intensities were
obtained from the first-order small perturbation method (SPM) [7–12] with random interfaces having
centered Gaussian height distributions. For single-look scattering intensities, we showed that the ratio
obeyed heavy-tailed probability distribution, whose mean and variance are not defined.

It is important to define various combinations of polarized signatures to determine which
combination is most suitable for land cover classification and characterization purposes. Some authors
use normalized difference polarization index (NDPI) as an indicator. NDPI is defined as the ratio
(I(ba) − I(b′a′))/(I(ba) + I(b′a′)) where the quantity I(ba) designates the (b)-polarized component of the
scattered intensity for the (a)-polarized incident wave. NDPI values extracted from polarimetric data
are used for monitoring, analyzing, and labelling different land cover types [13, 14]. NDPI is a random
variable defined over [−1;+1], and contrary to the intensity ratio, the mean and variance values of
this discriminator are finite. In [15], within the framework of the SPM, we determined the probability
distribution of the NDPI, and for a sand layer covering a granite surface, we studied the combined
influence of the interface anisotropy and their cross-correlation upon the probability laws. In [16], we
defined the Layered Rough Surface Index (LRSI) to study stratified media. This indicator is defined as
the ratio I(b′a′)/(I(ba) + I(b′a′)). For a given observation direction, this descriptor is a random variable
defined over [0;+1] and is characterized by a finite mean and a finite variance. For a structure air/clayey
soil/rock, we analyzed the influence of a snow layer cover upon the distribution of the LRSI in the cases
of Gaussian and exponential correlation functions, and we showed that the shape of the distribution
was truly useful to differentiate the cases with and without snow cover.

Polarimetric signatures often exhibit substantial fluctuations, and it is often necessary to average
data. Multilook return statistics were studied under the assumption of a multivariate Gaussian model
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for the two underlying complex components of the field scattered by the random medium [1–3, 6]. The
present paper is an extension of our previous works on the statistical properties of NDPI and LRSI in
single-look [15, 16] and of the ratio of intensities in multi-looks [6]: we are interested in the statistical
properties of the co- and cross-polarized LRSI and NDPI but for multilook configurations. We derive
the theoretical expressions for the PDF and cumulative distribution function (CDF) for a stratified
medium bounded by random slightly rough interfaces illuminated by a linearly polarized plane wave.
Recurrence relations give access to the first- and second-order moments. To the best of the authors’
knowledge, it is the first time that these analytical expressions are found.

2. THE MULTILOOK INTENSITY RATIO

The three-dimensional layered structure, analyzed here, is shown in Figure 1, which is composed of three
non-magnetic regions characterized by an isotropic, homogeneous permittivity. The top and bottom
regions are half-spaces. Relative permittivity values are εr1 = 1 for the top region that is assimilated to
the vacuum, εr2 for the layer, and εr3 for the bottom region. The boundaries are denoted by z = a1(x, y)
and z = a2(x, y)−u0 where both functions a1(x, y) and a2(x, y) are realizations of zero-mean stationary
Gaussian random processes. The quantity u0 denotes the central layer thickness.

Figure 1. Structure with two nonparallel interfaces.

As shown in Figure 1, a monochromatic plane wave with wavelength λ is incident down onto the
layered structure. The incident wave-vector direction is given by the zenith angle θ0 and azimuth angle
ϕ0. The incident plane wave gives rise after reflection to outgoing plane waves in all directions (θ, ϕ) of
the upper region, whose first-order amplitudes are derived from the SPM as follows [7, 8]:

A
(1)
1,(ba)(θ, ϕ) = K1,(ba)(α, β)â1(α− α0, β − β0) +K2,(ba)(α, β)â2(α− α0, β − β0) (1)

with α = k sin θ cosϕ, β = k sin θ sinϕ, α0 = k sin θ0 cosϕ0, β0 = k sin θ0 sinϕ0, and k = 2π/λ. The
subscript (a) gives the incident plane wave polarization (horizontal or vertical) and the subscript (b),
that of the scattered wave (h or v), respectively. The function âi(α, β) is the 2D Fourier transform of
ai(x, y). The complex coefficients Ki,(ba)(α, β) designate the first-order SPM kernels [7–12]. We recall
that the first-order SPM is a low frequency approach valid for small roughness, and the surface height
function must satisfy two restrictions: First, the root-mean-square height of the rough interface is small
compared to the incident wavelength, and secondly, the gradient of the interface is small in comparison
to unity [17, 18].

Within the framework of the SPM, the ratio between the scattered intensities I(ba)(θ, ϕ) and
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I(b′a′)(θ, ϕ) is defined by

V(ba,b′a′)(θ, ϕ) =

∣∣∣A(1)
(ba)(θ, ϕ)

∣∣∣2∣∣∣A(1)
(b′a′)(θ, ϕ)

∣∣∣2 (2)

The intensity ratio V(ba,b′a′)(θ, ϕ) depends on rough boundary height profile realizations, and for a
given direction, it is a random variable.

Any linear operator transforms a Gaussian process into another Gaussian process. Since the height
distributions of each rough interface are Gaussian, and the Fourier transform is a linear operation,
we deduce that the joint PDF of the real and imaginary parts of the complex scattered amplitudes

A
(1)
(ba)(θ, ϕ) and A

(1)
(b′a′)(θ, ϕ) is a 4D-Gaussian function. In [4], the PDF pV(ba,b′a′)(v) of the intensity ratio

V(ba,b′a′)(θ, ϕ) was derived from this joint distribution, and a heavy-tailed distribution was obtained

pV(ba,b′a′)(v) =
(1− r2)p0(v + p0)[

v2 + 2vp0(1− 2r2) + p20
]3/2 (3)

where v ≥ 0. The first- and second-order moments of the random variable V(ba,b′a′)(θ, ϕ) are infinite.
The two parameters of pV(ba,b′a′)(v) are the modulus r of the complex correlation coefficient between

the scattered amplitudes A
(1)
(ba)(θ, ϕ) and A

(1)
(b′a′)(θ, ϕ) and the ratio p0 between the associated average

intensities. In [4], we showed that the parameters r and p0 are functions of the first-order SPM kernels,
on the spectrum of each interface and their cross-spectrum, and on the incidence and observation angles.

The n-look intensities are defined as follows:

In,(ba)(θ, ϕ) =
1

n

n∑
i=1

I(ba),i(θ, ϕ) (4)

In [6], we obtained a 3-parameter probability distribution for the n-look intensity ratio Vn,(ba,b′a′) =

In,(ba)/Īn,(b′a′) ,

pVn,(ba,b′a′)(v) =
Γ(2n)

Γ(n)Γ(n)

(1− r2)npn0v
n−1(v + p0)[

v2 + 2vp0(1− 2r2) + p20
]n+1/2

(5)

where the letter Γ designates the Gamma function. In [6], we also established the analytical expression
for the CDF

FVn,(ba,b′a′)(v) = FV1,(ba,b′a′)(v) +
v − p0√

v2 + 2vp0(1− 2r2) + p20

×
n−1∑
m=1

Γ(2m)

mΓ(m)Γ(m)

[
(1− r2)p0v

v2 + 2vp0(1− 2r2) + p20

]m
(6)

where the function FV1,(ba,b′a′)(v) is the CDF for a single-look intensity ratio,

FV1,(ba,b′a′)(v) =
1

2
+

v − p0

2
√

v2 + 2vp0(1− 2r2) + p20
. (7)

We deduce from (6) and (7) that the parameter p0 is the median of the n-look intensity ratio for any
value of n, and in [6], we showed that the mean mVn exists for n > 1 and the variance σ2

Vn,(ba,b′a′)
for

n > 2, respectively:

mVn =
(n− r2)p0
(n− 1)

(8)

σ2
Vn

=
p20

(n− 1)2(n− 2)

{
n(2n− 1)− r2

[
4(n− 1)(1− r2) + n(2n− r2)

]}
. (9)
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3. STATISTICS OF THE MULTILOOK LRSI

Let Sn,(b′a′,ba) = In,(b′a′)/(In,(ba)+In,(b′a′)) be the multilook LRSI associated with the components (b′a′)
and (ba) of the wave scattered in the direction (θ, ϕ). Knowing that Sn,(b′a′,ba) = 1/(Vn,(ba,b′a′) +1), the
PDF of Sn,(b′a′,ba) is determined from the following transformation,

pSn,(b′a′,ba) (s) =

∣∣∣∣dv(s)ds

∣∣∣∣ pVn,(ba,b′a′) [v(s)] =
1

s2
pVn,(ba,b′a′) [v(s)] (10)

where v = (1− s)/s, and we obtain the PDF defined on [0; 1],

pSn,(b′a′,ba)(s) =
Γ(2n)

Γ2(n)

pn0 (1− r2)n
(
s− s2

)n−1
[s(p0 − 1) + 1]

R
n+1/2
S

(11)

with
RS = s2

[
(1− p0)

2 + 4r2p0
]
+ 2s

[
(p0 − 1)− 2r2p0

]
+ 1. (12)

The CDF of the continuous random variable Sn,(b′a′,ba) is the primitive function of its PDF. After some
mathematical manipulations, we obtain

FSn,(ba,b′a′)(s) = 1− FVn,(ba,b′a′)

(
1− s

s

)
. (13)

Finally, by substituting (7) into (13), we show that the CDF of the multilook LRSI is defined as follows:

FSn,(ba,b′a′)(s) = FS1,(ba,b′a′)(s) +
s(1 + p0)− 1

R
1/2
S

n−1∑
m=1

Γ(2m)

mΓ(m)Γ(m)

(
(1− r2)p0s (1− s)

RS

)m

. (14)

The function FS1,(ba,b′a′)(s) is the CDF for a single-look LRSI. We established in [16] that

FS1,(ba,b′a′)(s) =
1

2
+

s(p0 + 1)− 1

2R
1/2
S

. (15)

We deduce from (14) and (15) that the median of the multilook LRSI is 1/(1+p0) and does not depend
on the number of looks.

We derive from (11) a recurrence relation for pSn,(ba,b′a′)(s) and pSn+1,(ba,b′a′)(s):{
s2
[
(p0 − 1)2 + 4r2p0

]
+ 2s(p0 − 1− 2r2p0) + 1

}
pSn+1,(ba,b′a′)(s)

=
2(2n+ 1)

n
p0(1− r2)s (1− s) pSn,(ba,b′a′)(s). (16)

By integrating the recurrence relation from 0 to 1, we obtain a recurrence relation for the means mSn

and mSn+1 :

[
(p0−1)2+4r2p0

]
mSn+1+2(p0−1−2r2p0)+

1∫
0

pSn+1,(ba,b′a′)(s)

s
ds=

2(2n+1)

n
p0(1−r2) (1−mSn) . (17)

Using the change of variable s = 1/(v + 1), we show that

1∫
0

pSn+1,(ba,b′a′)(s)

s
ds =

+∞∫
0

vpVn+1,(ba,b′a′)(v)dv + 1 = 1 +mVn+1 . (18)

By substituting (8) and (18) into (17), we obtain the first-order moment for the multilook LRSI by the
following recurrence relation:

mSn+1 =
(1 + p0)n+ (1− r2)p0 − 2(2n+ 1)p0(1− r2)mSn

[(p0 − 1)2 + 4r2p0]n
. (19)
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In [16], we established the analytical expression of the mean mS1 for a single-look LRSI with

mS1 =
2p0r

2 − (p0 − 1)

(p0 − 1)2 + 4p0r2
+

p0(p0 − 1)(1− r2)

[(p0 − 1)2 + 4p0r2]
3/2

ln

(
p0

√
(p0 − 1)2 + 4p0r2 + (p0 − 1) + 2r2√
(p0 − 1)2 + 4p0r2 + (p0 − 1)− 2p0r2

)
. (20)

We also find from (17) a four-term recurrence relation for the first- and second-order moments mSn ,
mSn+1 , mS2

n
and mS2

n+1
:[

(p0 − 1)2 + 4r2p0
]
mS2

n+1
= −2(p0 − 1− 2r2p0)mSn+1 + 1 +

2(2n+ 1)

n
p0(1− r2)(mSn −mS2

n
). (21)

The first-term mS2
1
of this recurrence relation was established in [16] with

mS2
1
=

(p0 + 1)
[
(p0 − 1)2 + p0r

2(3− p0)
]
− 8p20r

2(1− r2)

[(p0 − 1)2 + 4p0r2]
2

+
2p0(1− r2)

[
p0r

2(3p0 − 1)− (p0 − 1)2
]

[(p0 − 1)2 + 4p0r2]
5/2

ln

[
p0

√
(p0 − 1)2 + 4p0r2 + (p0 − 1) + 2r2√
(p0 − 1)2 + 4p0r2 + (p0 − 1)− 2p0r2

]
. (22)

We show from (19) that lim
n→∞

mSn = 1/(1 + p0) and from (21) that lim
n→∞

mS2
n
= m2

Sn
. As a result, the

variance σ2
Sn

= mS2
n
−m2

Sn
tends asymptotically toward zero. The random variable Sn,(b′a′,ba) is almost

surely a constant. It always has the same value 1/(1 + p0) that is the median.

4. STATISTICS OF THE MULTILOOK NDPI

The multilook NDPI Wn,(ba,b′a′) is defined as Wn,(ba,b′a′) = (In,(ba) − In,(b′a′))/(In,(ba) + In,(b′a′)) and
takes values in [−1;+1]. We determine its PDF from the following transformation

pWn,(ba,b′a′)(w) =

∣∣∣∣ds(w)dw

∣∣∣∣ pSn,(ba,b′a′) [s(w)] (23)

where s = (1− w)/2. For −1 ≤ w ≤ +1, we find that

PWn,(ba,b′a′)(w) =
2Γ(2n)

Γ(n)Γ(n)

(1− r2)npn0 (1− w2)n−1 [w(1− p0) + (1 + p0)]

R
n+1/2
W

(24)

with
RW = w2

[
(1− p0)

2 + 4r2p0
]
+ 2w(1− p20) + (1 + p0)

2 − 4r2p0. (25)

The CDF of Wn,(ba,b′a′) is obtained by the integral of its PDF. After some mathematical manipulations,
we obtain

FWn,(ba,b′a′)(w) = 1− FSn,(ba,b′a′)

(
1− w

2

)
. (26)

Finally, substituting (14) into (26), we obtain the CDF of the multilook NDPI as follows:

FWn,(ba,b′a′)(w) = FW1,(ba,b′a′)(w) +
w(1 + p0) + 1− p0

R
1/2
W

n−1∑
m=1

Γ(2m)

mΓ(m)Γ(m)

(
(1− r2)p0(1− w2)

RW

)m

. (27)

The function FW1,(ba,b′a′)(w) is the CDF for a single-look NDPI. We established in [15] that

FW1,(ba,b′a′)(w) =
1

2
+

w(1 + p0) + 1− p0

2R
1/2
W

. (28)

We deduce from (27) and (28) that the median of the n-look NDPI is (p0 − 1)/(p0 + 1). Knowing that
Wn,(ba,b′a′) = 1− 2Sn,(ba,b′a′), we deduce the first- and second-order moments of Wn,(ba,b′a′)

mWn = 1− 2mSn . (29)

mW 2
n
= 4mS2

n
− 4mSn + 1. (30)
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We show that lim
n→∞

mWn = (p0−1)/(p0+1) and lim
n→∞

mW 2
n
= m2

Wn
. As a result, the variance σ2

Wn
tends

asymptotically toward zero. The random variable Wn,(b′a′,ba) is almost surely a constant. It always has
the same value (p0 − 1)/(p0 + 1) that is the median.

The closed form expressions of the probability density function and the cumulative density function
for the LRSI and the NDPI and the recurrence relations giving the first- and second-order moments
are valid whatever the value of the number of looks. Nevertheless, we have to keep in mind that these
expressions are valid under the assumption of a multivariate Gaussian model for the real and imaginary
parts of the two underlying components of the field scattered by the illuminated zone.

5. THEORETICAL AND NUMERICAL RESULTS

Consider a stack of two rough surfaces illuminated by a monochromatic plane wave of wavelength λ
equal to 24 cm. The relative permittivity values are εr2 = 4.66 − 0.29j and εr3 = 8.75 − 0.85j. The
Gaussian spectrum of the first random interface is anisotropic with the Ox-correlation length equal to
5 cm and the Oy-correlation length equal to 4 cm [6]. The Gaussian spectrum of the second interface
is isotropic with a correlation length equal to 6 cm. The correlation coefficient between the two rough
interfaces is equal to 1/5. The root-mean-square heights are equal to 0.5 cm and 0.4 cm, respectively.
The average thickness u0 of the central layer is equal to 5 cm. The zenith angle θ0 and azimuth angle ϕ0

of the incident wave vector are equal to 30◦ and 0◦, respectively. The values chosen for the rms-heights
and the correlation lengths allow the use of the first-order SPM and correspond to certain slightly rough
agricultural soils [19–21]. These values can correspond approximatively to soil moistures in volumetric
content of 10% and 20% [22].

Figure 2 shows the PDF of the LRSI Sn,(hh,vv) in the backscattering direction for n = 1, 2, 4,
and 8. The theoretical PDFs are given by (11) and assume surfaces of infinite extent. The histograms
in Figure 2 are obtained from Monte-Carlo simulations considering a set of 213 stratified structures
with L = 20λ and the associated scattered amplitudes given by (1). Figure 3 shows the theoretical
CDF curves obtained from (14) and those obtained by Monte-Carlo simulations. The height profile
functions are generated by Gaussian filters applied to uncorrelated white Gaussian noise realizations.
The generation process of correlated interfaces is described in [16]. The Fourier Transform in Eq. (1) is
calculated by fast Fourier transform (FFT). The first-order SPM kernels are given in [6, 7]. Comparison
is conclusive for each value of n. Such comparisons were made for the n-look NDPI and for observation

Figure 2. PDF of the n-look LRSI Sn,(hh,vv) for n = 1, 2, 4 and 8.



Progress In Electromagnetics Research M, Vol. 115, 2023 17

Figure 3. CDF of the n-look LRSI Sn,(hh,vv) for n = 1, 2, 4 and 8.

Figure 4. PDF and CDF of Sn,(hh,vv) and Wn,(hh,vv) for n = 1, 4 and 16.

directions outside the incidence plane considering the co- and cross-polarized n-look LRSI and NDPI.
Comparisons were also conclusive but not shown here.

Figure 4 shows the PDF and CDF of Sn,(hh,vv) and Wn,(hh,vv) in the backscattering direction for
n = 1, 4, and 16. The multi-look processing reduces the statistical fluctuations, and the standard
deviations decrease when n increases. Consequently, the width of the NDPI- and LRSI-PDF curves
decreases when the number of looks increases, and the maximum value increases. The PDF of Sn,(hh,vv)

is defined on the interval [0; 1] and that of Wn,(hh,vv) on the interval [−1; 1]. We can note that the
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maximum value of the PDF of Sn,(hh,vv) is about twice that of the PDF of Wn,(hh,vv). Given the
electrical and geometrical parameter values, p0 = 0.5418. The median for the LRSI is equal to 0.6486
and for the NDPI, to 0.2972, respectively. The CDF curves intersect at the same point showing that the
median does not depend on the number of looks. As the number of looks increases, the CDF becomes
identified with a Heaviside function shifted on the median value equal to (p0− 1)/(p0+1) for the NDPI
and to 1/(p0+1) for the LRSI, respectively, and the PDFs converge to Dirac Delta distributions shifted
on the median values. As shown in Figures 2 and 3, this behavior is well reproduced by Monte Carlo
simulations. For a surface separating two homogeneous media, the (hh)-backscattered intensity is lower
than the (vv)-intensity [4]. For a stack of two random interfaces, the probability of the event {Ihh > Ivv}
has a non-zero probability in the backscatter direction. The probability of the event {Ihh > Ivv} becomes
identified with 1−FW1,(hh,vv)

(0) or with FS1,(vv,hh)
(0.5). This probability is equal to 0.0280. This means

that the (hh)-intensity is greater than the (vv)-intensity for only 2.8% of the realizations of the stratified
medium (236 cases observed out of 213 simulated). In a similar way, we can determine the probability
of the event {Īn,hh > Īn,vv}. We find: Pr{Ī2,hh > Ī2,vv} = 0.23× 10−2, Pr{Ī4,hh > Ī4,vv} = 0.20× 10−4

and Pr{Ī16,hh > Ī16,vv} < 10−15. The event {Īn,hh > Īn,vv} becomes asymptotically a null-event and
has no outcomes, and we find the result obtained in backscattering for a single surface separating two
homogeneous media.

Figure 5 shows the mean and standard deviation of the random variables Sn,(hh,vv) and Wn,(hh,vv) as
a function of n. These theoretical values are compared with those obtained from the set of realizations.
The comparison is conclusive. Nevertheless, curves show very small differences between theoretical
values and simulation results. Given the simulation parameter values, the theoretical value of the

modulus r of the correlation coefficient between the scattered amplitudes A
(1)
1,(hh) and A

(1)
1,(vv) is equal to

0.9941, and the ratio p0 is equal to 0.5418. The theory assumes surfaces with infinite extent. Values
obtained from the set of 213 scattered amplitudes associated with the set of 213 realizations of the
sub-surfaces with L = 20λ are equal to 0.9938 and 0.5403, respectively. It should be kept in mind that
the differences between the theoretical values of r and p0 and the values obtained from Monte-Carlo
simulations as well as the shifts observed on the curves decrease when the size of the generated surfaces
increases. It can be noticed that whatever the number of looks, the means are close to the asymptotic
values which correspond to the medians and that the standard deviations decrease when the number of
looks increases, and they are less than 1% of the PDF support from n ≥ 14.

Figure 5. Mean and standard deviation versus number of looks for the n-look LRSI Sn,(hh,vv) and for
the n-look NDPI Wn,(hh,vv).
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6. CONCLUSION

Within the framework of the first-order SPM, we have established the theoretical statistics of two
indicators, the LRSI and NDPI, for multilook signals scattered from multi-layered structures with
slightly rough interfaces under an illumination by a monochromatic plane wave. The closed-form
expressions for the PDFs and CDFs were obtained, and recurrence relations give access to the first- and
second-order moments.

For a two-layer rough ground, we have verified the effectiveness of the theory by comparing it with
the Monte Carlo simulation results. It should be kept in mind that whatever the random medium
studied, if the real and imaginary parts of the field scattered by the illuminated zone are Gaussian
random processes, the analytical expressions obtained for the n-look LRSI and n-look NDPI can be
used.

Nevertheless, the roughness of some natural or agricultural surfaces does not obey a Gaussian
height distribution. For example, the height distribution of some ploughed soils is not Gaussian [23, 24].
For non-Gaussian slightly rough surfaces, we do not know how to conclude on the nature of the joint
distribution of the real and imaginary parts of the scattering amplitudes. The use of the central limit
theorem deserves to be justified [25, 26]. It therefore appears useful to derive the analytical expression
for the joint probability distribution of the real and imaginary parts of the two underlying complex
scattering amplitudes within the framework of the small perturbation method. Moreover, the use of an
exact method or another analytical method seems unavoidable if the interfaces of the stratified medium
are strongly or moderately rough [11, 22, 27]. For Gaussian and non-Gaussian surfaces with a moderate
or high roughness, the first-order small perturbation method cannot be used, and the statistics for
the LRSI and the NDPI, in both single-look and multi-looks cases, remain established, either by an
analytical approach or by Monte-Carlo simulations. This is an open question that requires work in its
own right.
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