Vol. 176
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-10-29
Exceptional Ring by Non-Hermitian Sonic Crystals
By
Progress In Electromagnetics Research, Vol. 176, 1-10, 2023
Abstract
Exceptional point (EP) and exceptional ring (ER) are unique features for non-Hermitian systems, which have recently attracted great attentions in acoustics due to their rich physical significances and various potential applications. Despite the rapid development about the study of the EP and ER in one-dimensional acoustic systems, the realization of them in two-dimensional (2D) non-Hermitian structures is still facing a great challenge. To overcome this, we numerically and theoretically realize an ER in 2D reciprocal space based on a square-lattice non-Hermitian sonic crystal (SC). By introducing radiation loss caused by circular holes of each resonator in a Hermitian SC, we realize the conversion between a Dirac cone and the ER. Based on the theoretical analysis with the effective Hamiltonian, we obtain that the formation of the ER is closely related to different radiation losses of dipole and quadrupole modes in the resonators. Additionally, in the non-Hermitian SC, two eigenfunctions can be merged into a single self-orthogonal one on the ER, which does not exist in the Hermitian SC. Finally, by verifying the existence of the EP in every direction of 2D reciprocal space, we further demonstrate the ER in the proposed non-Hermitian SC. Our work may provide theoretical schemes and concrete methods for designing various types of non-Hermitian acoustic devices.
Citation
Bing-Bing Wang, Yong Ge, Shou-Qi Yuan, Ding Jia, and Hong-Xiang Sun, "Exceptional Ring by Non-Hermitian Sonic Crystals," Progress In Electromagnetics Research, Vol. 176, 1-10, 2023.
doi:10.2528/PIER22090301
References

1. Bender, C. M. and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT symmetry," Phys. Rev. Lett., Vol. 80, No. 24, 5243, 1998.
doi:10.1103/PhysRevLett.80.5243

2. El-Ganainy, C. M., K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, "Non-Hermitian physics and PT symmetry," Nat. Phys., Vol. 14, No. 1, 11-19, 2018.
doi:10.1038/nphys4323

3. Gong, Z. P., Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, "Topological phases of non-Hermitian systems," Phys. Rev. X, Vol. 8, No. 3, 031079, 2018.

4. Bergholtz, E. J., J. C. Budich, and F. K. Kunst, "Exceptional topology of non-Hermitian systems," Rev. Mod. Phys., Vol. 91, No. 1, 015005, 2021.
doi:10.1103/RevModPhys.93.015005

5. Ramezani, H., T. Kottos, R. El-Ganainy, and D. N. Christodoulides, "Unidirectional nonlinear PT-symmetric optical structures," Phys. Rev. A, Vol. 82, No. 4, 043803, 2010.
doi:10.1103/PhysRevA.82.043803

6. Lin, Z., H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, "Unidirectional invisibility induced by PT-symmetric periodic structures," Phys. Rev. Lett., Vol. 106, No. 21, 213901, 2011.
doi:10.1103/PhysRevLett.106.213901

7. Regensburger, A., C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature, Vol. 488, No. 8, 167-171, 2012.
doi:10.1038/nature11298

8. Liu, Z. P., J. Zhang, Ş. K. Ozdemir, B. Peng, H. Jing, X.-Y. Lu, C.-W. Li, L. Yang, F. Nori, and Y. Liu, "Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition," Phys. Rev. Lett., Vol. 117, No. 11, 110802, 2016.
doi:10.1103/PhysRevLett.117.110802

9. Chen, W., Ş. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, No. 8, 192-196, 2017.
doi:10.1038/nature23281

10. Hodaei, H., A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, "Enhanced sensitivity at higher-order exceptional points," Nature, Vol. 548, No. 8, 187-191, 2017.
doi:10.1038/nature23280

11. Chen, P.-Y., M. Sakhdari, M. Hajizadegan, Q. Cui, M. M.-C. Cheng, R. El-Ganainy, and A. Alù, "Generalized parity-time symmetry condition for enhanced sensor telemetry," Nat. Electron., Vol. 1, No. 5, 297-304, 2018.
doi:10.1038/s41928-018-0072-6

12. Chong, Y. D., L. Ge, and A. D. Stone, "PT-symmetry breaking and laser-absorber modes in optical scattering systems," Phys. Rev. Lett., Vol. 106, No. 9, 093902, 2011.
doi:10.1103/PhysRevLett.106.093902

13. Liertzer, M., L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, "Pump-induced exceptional points in lasers," Phys. Rev. Lett., Vol. 108, No. 17, 173901, 2012.
doi:10.1103/PhysRevLett.108.173901

14. Feng, L., Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, "Single-mode laser by parity-time symmetry breaking," Science, Vol. 346, No. 6212, 972-975, 2014.
doi:10.1126/science.1258479

15. Hodaei, H., M. A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, "Parity-time-symmetric microring lasers," Science, Vol. 346, No. 6212, 975-978, 2014.
doi:10.1126/science.1258480

16. Doppler, J., A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, "Dynamically encircling an exceptional point for asymmetric mode switching," Nature, Vol. 537, No. 9, 76-79, 2016.
doi:10.1038/nature18605

17. Xu, H., D. Mason, L. Jiang, and J. G. E. Harris, "Topological energy transfer in an optomechanical system with exceptional points," Nature, Vol. 537, No. 9, 80-83, 2016.
doi:10.1038/nature18604

18. Li, Z. P., G. T. Cao, C. H. Li, S. H. Dong, Y. Deng, X. K. Liu, J. S. Ho, and C. W. Qiu, "Non-Hermitian electromagnetic metasurfaces at exceptional points," Prog. Electromagn. Res., Vol. 171, 1-20, 2021.
doi:10.2528/PIER21051703

19. Yan, Q. H., H. S. Chen, and Y. H. Yang, "Non-Hermitian skin effect and delocalized edge states in photonic crystals with anomalous parity-time symmetry," Prog. Electromagn. Res., Vol. 172, 33-40, 2021.
doi:10.2528/PIER21111602

20. Christensen, J., M. Willatzen, V. R. Velasco, and M.-H. Lu, "Parity-time synthetic phononic media," Phys. Rev. Lett., Vol. 116, No. 20, 207601, 2016.
doi:10.1103/PhysRevLett.116.207601

21. Hou, Z. and B. Assouar, "Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials," J. Appl. Phys., Vol. 123, No. 8, 085101, 2018.
doi:10.1063/1.5009129

22. Wu, Q., Y. Chen, and G. Huang, "Asymmetric scattering of flexural waves in a parity-time symmetric metamaterial beam," J. Acoust. Soc. Am., Vol. 146, No. 1, 850, 2019.
doi:10.1121/1.5116561

23. Domínguez-Rocha, V., R. Thevamaran, F. M. Ellis, and T. Kottos, "Environmentally induced exceptional points in elastodynamics," Phys. Rev. Applied, Vol. 13, No. 1, 014060, 2020.
doi:10.1103/PhysRevApplied.13.014060

24. Shmuel, G. and N. Moiseyev, "Linking scalar elastodynamics and non-Hermitian quantum mechanics," Phys. Rev. Applied, Vol. 13, No. 2, 024074, 2020.
doi:10.1103/PhysRevApplied.13.024074

25. Kononchuk, R. and T. Kottos, "Orientation-sensed optomechanical accelerometers based on exceptional points," Phys. Rev. Research, Vol. 2, No. 2, 023252, 2020.
doi:10.1103/PhysRevResearch.2.023252

26. Rosa, M. I. N., M. Mazzotti, and M. Ruzzene, "Exceptional points and enhanced sensitivity in PT-symmetric continuous elastic media," J. Mech. Phys. Solids, Vol. 149, 104325, 2021.
doi:10.1016/j.jmps.2021.104325

27. Achilleos, V., G. Theocharis, O. Richoux, and V. Pagneux, "Non-Hermitian acoustic metamaterials: Role of exceptional points in sound absorption," Phys. Rev. B, Vol. 95, No. 14, 144303, 2017.
doi:10.1103/PhysRevB.95.144303

28. Yang, H., X. Zhang, Y. Liu, Y. Yao, F. Wu, and D. Zhao, "Novel acoustic flat focusing based on the asymmetric response in parity-time-symmetric phononic crystals," Sci. Rep., Vol. 9, 10048, 2019.
doi:10.1038/s41598-019-46467-3

29. Zhu, X. F., H. Ramezani, C. Z. Shi, J. Zhu, and X. Zhang, "PT-symmetric acoustics," Phys. Rev. X, Vol. 4, No. 3, 031042, 2014.

30. Fleury, R., D. Sounas, and A. Alù, "An invisible acoustic sensor based on parity-time symmetry," Nat. Commun., Vol. 6, 5905, 2015.
doi:10.1038/ncomms6905

31. Shi, C. Z., M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y. Wang, and X. Zhang, "Accessing the exceptional points of parity-time symmetric acoustics," Nat. Commun., Vol. 7, 11110, 2016.
doi:10.1038/ncomms11110

32. Liu, T., X. Zhu, F. Chen, S. Liang, and J. Zhu, "Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal," Phys. Rev. Lett., Vol. 120, No. 12, 124502, 2018.
doi:10.1103/PhysRevLett.120.124502

33. Ding, K., G. Ma, M. Xiao, Z. Q. Zhang, and C. T. Chan, "Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization," Phys. Rev. X, Vol. 6, No. 2, 021007, 2016.

34. Ding, K., G. Ma, Z. Q. Zhang, and C. T. Chan, "Experimental demonstration of an anisotropic exceptional point," Phys. Rev. Lett., Vol. 121, No. 8, 085702, 2018.
doi:10.1103/PhysRevLett.121.085702

35. Zhu, W., X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen, "Simultaneous observation of a topological edge state and exceptional points in an open and non-Hermitian acoustic system," Phys. Rev. Lett., Vol. 121, No. 121, 124501, 2018.
doi:10.1103/PhysRevLett.121.124501

36. Shen, C., J. F. Li, X. Y. Peng, and S. A. Cummer, "Synthetic exceptional points and unidirectional zero reflection in non-Hermitian acoustic systems," Phys. Rev. Materials, Vol. 2, No. 12, 125203, 2018.
doi:10.1103/PhysRevMaterials.2.125203

37. Gu, Z., H. Gao, T. Liu, S. Liang, S. An, Y. Li, and J. Zhu, "Topologically protected exceptional point with local non-Hermitian modulation in an acoustic crystal," Phys. Rev. Applied, Vol. 15, No. 1, 014025, 2021.
doi:10.1103/PhysRevApplied.15.014025

38. Wang, X., X. S. Fang, D. X. Mao, Y. Jing, and Y. Li, "Extremely asymmetrical acoustic metasurface mirror at the exceptional point," Phys. Rev. Lett., Vol. 123, No. 21, 214302, 2019.
doi:10.1103/PhysRevLett.123.214302

39. Jia, D., Y. Wang, Y. Ge, S. Q. Yuan, and H. X. Sun, "Tunable topological refractions in valley sonic crystals with triple valley hall phase transitions," Prog. Electromagn. Res., Vol. 172, 13-22, 2021.
doi:10.2528/PIER21102002

40. Zhen, B., C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, "Spawning rings of exceptional points out of Dirac cones," Nature, Vol. 525, No. 9, 354-358, 2015.
doi:10.1038/nature14889

41. Wang, H. F., B. Y. Xie, S. K. Gupta, X. Y. Zhu, L. Liu, X. P. Liu, M. H. Lu, and Y. F. Chen, "Exceptional concentric rings in a non-Hermitian bilayer photonic system," Phys. Rev. B, Vol. 100, No. 16, 165134, 2019.
doi:10.1103/PhysRevB.100.165134

42. Kolkowski, R., S. Kovaios, and A. F. Koenderink, "Pseudochirality at exceptional rings of optical metasurfaces," Phys. Rev. Research, Vol. 3, No. 2, 023185, 2021.
doi:10.1103/PhysRevResearch.3.023185

43. Cerjan, A., S. Huang, M. Wang, K. P. Chen, Y. D. Chong, and M. C. Rechtsman, "Experimental realization of a Weyl exceptional ring," Nat. Photon., Vol. 13, No. 9, 623-628, 2019.
doi:10.1038/s41566-019-0453-z

44. Xu, Y., S. T. Wang, and L. M. Duan, "Weyl exceptional rings in a three-dimensional dissipative cold atomic gas," Phys. Rev. Lett., Vol. 118, No. 4, 045701, 2017.
doi:10.1103/PhysRevLett.118.045701

45. Liu, J. J., Z. W. Li, Z. G. Chen, W. Y. Tang, A. Chen, B. Liang, G. C. Ma, and J. C. Cheng, "Experimental realization ofWeyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal," Phys. Rev. Lett., Vol. 129, No. 8, 084301, 2022.
doi:10.1103/PhysRevLett.129.084301