Vol. 107
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-11-02
Passive 2-d Retro Directive Array Antenna with Adjustable Reflection Angle
By
Progress In Electromagnetics Research Letters, Vol. 107, 103-110, 2022
Abstract
In this paper, a planar passive array antenna is proposed with capability of reradiating the incoming incident wave to predetermined θ and φ reflection angles (2-D). This purpose is achieved by differentiating array elements' phases with the help of inter-connecting transmission lines. Incident and reradiated signal paths are isolated through two orthogonal polarizations used in the array structure. The idea is realized with a 2×2, microstrip, dual linearly polarized antenna arrays in 2 GHz operating frequency on the Ro5880 substrate with 1.2 mm height. Nonlinear nature of the theory behind this idea leads to some limitations in choosing the angles of incident and reflected signals which is thoroughly investigated.
Citation
Mohammadreza Fallah, Nima Mokary Bahar, and Seyed Hassan Sedighy, "Passive 2-d Retro Directive Array Antenna with Adjustable Reflection Angle," Progress In Electromagnetics Research Letters, Vol. 107, 103-110, 2022.
doi:10.2528/PIERL22082506
References

1. Goshi, D. S., K. M. Leong, and T. Itoh, "Recent advances in retrodirective system technology," 2006 IEEE Radio and Wireless Symposium, 459-462, IEEE, 2006.
doi:10.1109/RWS.2006.1615194

2. Leong, K. M., R. Y. Miyamoto, and T. Itoh, "Moving forward in retrodirective antenna arrays," IEEE Potentials, Vol. 22, No. 3, 16-21, 2003.
doi:10.1109/MP.2003.1232308

3. Miyamoto, R. Y. and T. Itoh, "Retrodirective arrays for wireless communications," IEEE Microwave Magazine, Vol. 3, No. 1, 71-79, 2002.
doi:10.1109/6668.990692

4. Shiroma, W., B. Murakami, J. Roque, S. Sung, G. Shiroma, and R. Miyamoto, "Progress in self- steering antennas for small-satellite networks," Space 2004 Conference and Exhibit, 5943, 2004.

5. Shiroma, W. A., et al., "Progress in retrodirective arrays for wireless communications," 2003 IEEE Topical Conference on Wireless Communication Technology, 80-81, IEEE, 2003.
doi:10.1109/WCT.2003.1321438

6. Chepala, A., V. Fusco, and N. Buchanan, "Active circular retro-directive array," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6677-6679, 2019.
doi:10.1109/TAP.2019.2927628

7. Le Bihan, P., et al., "Dual-polarized aperture-coupled patch antennas with application to retrodirective and monopulse arrays," IEEE Access, Vol. 8, 7549-7557, 2019.

8. Ali, A. A., H. B. El-Shaarawy, and H. Aubert, "Millimeter-wave substrate integrated waveguide passive Van Atta reflector array," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1465-1470, 2012.
doi:10.1109/TAP.2012.2228622

9. Mandal, J., M. K. Mandal, M. Kahar, S. Chakrabarty, and R. Jyoti, "An active retro-directive array with different transmit and receive frequencies," 2019 IEEE MTT-S International Microwave and RF Conference (IMARC), 1-5, IEEE, 2019.

10. Alharbi, M., M. A. Alyahya, S. Ramalingam, A. Y. Modi, C. A. Balanis, and C. R. Birtcher, "Metasurfaces for reconfiguration of multi-polarization antennas and van atta reflector arrays," Electronics, Vol. 9, No. 8, 1262, 2020.
doi:10.3390/electronics9081262

11. Polehn, D. L. and F. Weisbrod, "Retro-directive metamaterial array antenna system,", ed: Google Patents, 2019.

12. Zhu, Z.-B., et al., "A high-precision terahertz retrodirective antenna array with navigation signal at a different frequency," Frontiers of Information Technology & Electronic Engineering, Vol. 21, 377-383, 2020.
doi:10.1631/FITEE.1900581

13. Miyamoto, R. Y., G. S. Shiroma, B. T. Murakami, and W. A. Shiroma, "A high-directivity transponder using self-steering arrays," 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), Vol. 3, 1683-1686, IEEE, 2004.
doi:10.1109/MWSYM.2004.1338913

14. Buchanan, N. B., V. F. Fusco, and M. van der Vorst, "SATCOM retrodirective array," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 5, 1614-1621, 2016.
doi:10.1109/TMTT.2016.2541121

15. Wei, X., L. He, and L. Chen, "Retrodirective antenna for inter-satellite data transmission," IEEE Access, Vol. 8, 89720-89726, 2020.
doi:10.1109/ACCESS.2020.2993468

16. Chiu, L., T. Yum, W. Chang, Q. Xue, and C. Chan, "Retrodirective array for RFID and microwave tracking beacon applications," Microwave and Optical Technology Letters, Vol. 48, No. 2, 409-411, 2006.
doi:10.1002/mop.21365

17. Ren, Y.-J. and K. Chang, "New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 7, 2970-2976, 2006.
doi:10.1109/TMTT.2006.877422

18. Re, P. D. H., S. K. Podilchak, S. A. Rotenberg, G. Goussetis, and J. Lee, "Circularly polarized retrodirective antenna array for wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2743-2752, 2019.

19. Fairouz, M. and M. A. Saed, "A complete system of wireless power transfer using a circularly polarized retrodirective array," Journal of Electromagnetic Engineering and Science, Vol. 20, No. 2, 139-144, 2020.
doi:10.26866/jees.2020.20.2.139

20. Rodenbeck, C. T., M.-Y. Li, and K. Chang, "A phased-array architecture for retrodirective microwave power transmission from the space solar power satellite," 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), Vol. 3, 1679-1682, IEEE, 2004.
doi:10.1109/MWSYM.2004.1338912

21. Lim, S., K. M. Leong, and T. Itoh, "Adaptive power controllable retrodirective array system for wireless sensor server applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3735-3743, 2005.
doi:10.1109/TMTT.2005.856086

22. Leong, K. M. and T. Itoh, "Mutually exclusive data encoding for realization of a full duplexing self-steering wireless link using a retrodirective array transceiver," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3687-3696, 2005.
doi:10.1109/TMTT.2005.856081

23. Leong, K. M. and T. Itoh, "Full-duplex retrodirective array using mutually-exclusive uplink and downlink modulation schemes," 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), Vol. 3, 1695-1698, IEEE, 2004.
doi:10.1109/MWSYM.2004.1338916

24. Van Atta, L. C., "Electromagnetic reflector,", ed: Google Patents, 1959.

25. Sharp, E. and M. Diab, "Van Atta reflector array," IRE Transactions on Antennas and Propagation, Vol. 8, No. 4, 436-438, 1960.
doi:10.1109/TAP.1960.1144877

26. Withers, M., "An active Van Atta array," Proceedings of the Institution of Electrical Engineers, Vol. 111, No. 5, 982-984, IET, 1964.
doi:10.1049/piee.1964.0154

27. Chung, S.-J., S.-M. Chen, and Y.-C. Lee, "A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 542-547, 2003.
doi:10.1109/TMTT.2002.807814

28. Pon, C., "Retrodirective array using the heterodyne technique," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 2, 176-180, 1964.
doi:10.1109/TAP.1964.1138191

29. Ang, P. and G. V. Eleftheriades, "A passive redirecting Van Atta-type reflector," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 689-692, 2018.
doi:10.1109/LAWP.2018.2812108

30. Zuo, J. and D. Piao, "Effect of loss tangent on the performance of retrodirective array based on microstrip patch," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-3, IEEE, 2019.

31. Uluisik, C., G. Cakir, M. Cakir, and L. Sevgi, "Radar cross section (RCS) modeling and simulation, part 1: A tutorial review of definitions, strategies, and canonical examples," IEEE Antennas and Propagation Magazine, Vol. 50, No. 1, 115-126, 2008.
doi:10.1109/MAP.2008.4494511

32. Gross, F., Smart Antennas with Matlab: Principles and Applications in Wireless Communication, McGraw Hill Professional, 2015.