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Passive 2-D Retro Directive Array Antenna with Adjustable
Reflection Angle
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Abstract—In this paper, a planar passive array antenna is proposed with capability of reradiating the
incoming incident wave to predetermined θ and φ reflection angles (2-D). This purpose is achieved by
differentiating array elements’ phases with the help of inter-connecting transmission lines. Incident and
reradiated signal paths are isolated through two orthogonal polarizations used in the array structure.
The idea is realized with a 2× 2, microstrip, dual linearly polarized antenna array in 2GHz operating
frequency on the Ro5880 substrate with 1.2mm height. Nonlinear nature of the theory behind this idea
leads to some limitations in choosing the angles of incident and reflected signals which is thoroughly
investigated.

1. INTRODUCTION

Retro-directive array antennas (RDAs) have captured the attention of researchers during past decades
because of their advantages upon smart antennas in terms of simplicity and functionality. These
arrays can perform smart antennas functionalities (beam-tracking and beam-forming in most of the
cases), needless of using phase shifters and other bulky and complex steering systems behind the
array [1–12]. They can automatically reflect the incoming signal toward its source direction without
any prior knowledge about signal direction of arrival (DOA). Since there is no need for extra signal
computation in their structure, RDAs perform significantly faster than smart antennas. These features
make RDAs suitable pointing and tracking candidates for a lot of wireless applications including
transponders [13], satellite communications [4, 14, 15], radiofrequency identification (RFID) [16],
microwave power transmission [17–19], solar power satellites (SPSs) [20], etc. [21–23].

Generally, RDAs can be divided into two categories. The first one known as Van Atta array was
primarily proposed by Van Atta in 1960 [24, 25], which is basically a uniform and evenly distributed
linear array with connected symmetric element pairs with respect to origin. This arrangement leads
to reflecting the incident signal toward its source location automatically. Power amplifiers can be used
through inter-connecting elements in order to also increase the reflected signal strength [26, 27]. The
dependence of the array parameters on its radiator elements such as directivity and bandwidth can be
named as the main restrictions in Van Atta arrays.

The second category, named phase conjugation arrays, uses heterodyne techniques in each array
element to reflect the incoming wave into its source direction [28]. In this approach, the incoming signal
is mixed with a secondary signal produced by a local oscillator. In this way, the conjugated phase of
incoming signal can be produced in each element leading to reradiating incident signal to the source
direction. System complexity and interfering signals are the main problems of this architecture.

In this work, a rectangular 2 × 2 array antenna with inter-connecting elements at operation
frequency of 2GHz is proposed which is able to reradiate the incoming signal to a predetermined θ
and φ reflection angle (2-D). Although a linear array with the capability of reradiating an incoming
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signal to a predetermined angle in one dimension (θ) has been proposed in [29], the 2D array with this
capability (adjustable reflection angle) is discussed here for the first time. Initially, the theory behind
this idea is thoroughly developed for an arbitrary M×N rectangular array, and then, as a case study, M
and N are considered 2 for simplicity. The patch antenna is chosen to be used as the radiating element,
also. In addition, dual orthogonal linear polarizations are used in the structure to isolate the incoming
and outgoing signals. Since using low-loss substrate plays a critical role in the array structure [30],
RO5880 is considered for this. The elements and array dimensions are calculated and simulated in
CST Studio software. Then, several incident waves are considered to be applied on the structure to
prove its performance. Bistatic RCS method is used to observe the reflection pattern of the array [31].
According to design consideration, this array should be able to reflect an arbitrary incident signal with
10◦ reflection shift at θ-plane (as an example) in orthogonal polarization of the incident signal. Finally,
some limitations in design procedure which are mostly behind the theory are investigated.

This paper is organized as follows. Section 2 presents the theory behind the proposed system.
Array design and simulation results are discussed in Section 3. Section 4 is devoted to limitations in
design procedure. Finally, Section 5 concludes the paper.

2. THEORY

A uniform planar M ×N (M and N are even) array is considered as shown in Fig. 1. The array factor
(AF ) of this rectangular array can be realized through following equation [32]:

AF = AFx ×AFy =

p∑
m=−(p−1)

q∑
n=−(q−1)

ωmn · ej
(2m−1)

2
Sej

(2n−1)
2

C

C = kdx sin θ cosφ,

S = kdy sin θ sinφ

(1)

where ωmn is the (m,n)-th element weight; k = 2π/λ (λ: free space wavelength at operating frequency),
p = M/2, q = N/2; dx and dy are the space between adjacent elements at x and y directions, respectively;
and (φ, θ) are spatial angles.

Figure 1. General M ×N rectangular planar array.

For the realization of retro-directive performance, the symmetric elements with respect to origin
coordination should be connected to each other through transmission lines which are named as inter-
connecting elements in this paper. In other words, the transmitted signal for the (m,n)-th element is the
received signal for the (−m,−n)-th one. Considering these inter connections, the weighting coefficients
can be expressed as

ωmn =

p∑
m=−(p−1)

q∑
n=−(q−1)

e−j
(2m−1)

2
S0e−j
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C0 = kdx sin θ0 cosφ0,

S0 = kdy sin θ0 sinφ0

(2)
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where (φ0, θ0) are the spatial angles of incident wave.
In order to make a desired spatial shift in the reflection angle, the inter-connecting elements should

have specific phase differences which are achievable with the help of transmission lines or adjustable
analog/digital phase shifters. These phase differences can be considered in the array factor as:

AF = AFx ×AFy =

p∑
m=−(p−1)

q∑
n=−(q−1)

ωmn · ej
(2m−1)

2
Sej

(2n−1)
2

C × e−j
δ(2m−1),(2n−1)

2

(δi,j = −δ−i,−j)

(3)

where δ(2m−1),(2n−1) is the phase shift at each element. Since all of the array elements are connected
to their corresponding pair with respect to origin, the elements with symmetric indexes in δ terms
represent the inter-connecting elements (ex. δ−3,1 and δ3,−1). It is obvious that these inter-connected
pairs have odd functionality with respect to each other (δi,j = −δ−i,−j).

Since the developed array factor shows symmetry in its exponential terms, the Euler’s identity can
be utilized to simplify it (ejκ + e−jκ = 2 cos(κ))

AF = AFx ×AFy = 2

p∑
m=−(p−1)

q∑
n=1

cos

{
2m− 1

2
(S − S0) +

2n− 1

2
(C − C0)−

1

2
δ(2m−1),(2n−1)

}
(4)

In order to achieve proper values for δ terms in (4) to realize the retro-directive performance, this
procedure should be followed: first, the incident wave parameters (φ0, θ0) are put in C0 and S0 terms.
Then the desired reflection parameters (φ, θ) are put in C and S terms. Since the AF is supposed
to be its maximum value in the desired reflection angle, the arguments inside cosine terms should be
considered zero. In this way, the phase differences (δ terms) can be appropriately extracted.

3. DESIGN AND SIMULATION

3.1. System Design

This work is based on a 2×2, equally spaced array (Fig. 2). Hence, in (4) M and N should be considered
2 and dx = dy = d. With these assumptions the array factor become:

AF = 2 cos

{
1

2
[C + S − (C0 + S0)− δ1,1]

}
+ 2 cos

{
1

2
[C − S − (C0 − S0) + δ−1,1]

}
(5)

where δ1,1 and δ−1,1 are the phase differences between (1, 4) and (2, 3) element pairs in Fig. 2,
respectively.

The array factor (4) will be maximum in desired reflection angle if the arguments inside
trigonometric terms equal zero. Thus:

δ1,1 = [C + S − (C0 + S0)]

δ−1,1 = [C0 − S0 − (C − S)]
(6)

So, the phase differences between (1, 4) and (2, 3) element pairs can be realized through equations
mentioned in (6).

It is assumed that the proposed system should be able to reflect any arbitrary incoming signal with
10◦ shift in θ-plane in cross-polarization of incident signal. A dual linearly polarized microstrip antenna
array with inter-connecting elements through microstrip lines is chosen and designed in CST studio
software to prove the idea (Fig. 2). Dual polarizations are used because of isolation between incoming
and outgoing signals. General system parameters are listed in Table 1.

Quarter wavelength matching method is utilized for matching considerations of array elements.
Also, in order to achieve suitable values of inter-connecting microstrip lines, an incident plane wave in
(φ, θ) = (270◦, 15◦) is considered to be applied on the structure. Hence, the desired reflected signal
should be observed in (φ, θ) = (270◦, 25◦) according to system assumptions. By applying incident and
reflected signals on (6), the phase difference between element pairs turns out −35.38◦ for both (1, 4)
and (2, 3) pairs. Since negative lengths are not practicable, this result has to be added to 360◦ which
makes it 324.62◦.
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Table 1. System parameters.

Parameter Value

Frequency 2GHz

Polarization Dual-Linear

Substrate Material RT-5880

Substrate Height 1.2mm

Substrate Permittivity 2.2

X

Y

L1

L
2

L3

D L q

Wq

W

x

y

1 2

43

Patch Antenna

(b)

(a)

Figure 2. Proposed array which produces 10-degree shift in θ angle of incident signal in the orthogonal
polarization, (a) side view, (b) top view.

According to system parameters mentioned in Table 1, the given electrical length (324.62◦) can be
transformed to physical length (≈ 98mm). All of the system dimensions are listed in Table 2.

3.2. Simulation Results

Several incident plane waves with different incoming angles are considered to be applied on the proposed
array to prove its performance. Bistatic RCS sweep method is used to observe the reflected signals in
both co-polarization and cross-polarization of incident signal. The RCS measured in cross-polarization
plane should be directed on desired reflecting angle (10◦ shift from incident wave in θ-plane). The
applied incident waves and desired reflecting signal specifications are listed in Table 3.

Figure 3 shows the results of bistatic RCS sweep (reflection signals or scattering patterns) in both
orthogonal polarizations for all incident signals mentioned in Table 3. This figure shows two scattering
patterns (RCSs) derived from the proposed array. The black one is reflection pattern which is the usual
behavior of any flat, reflective surface against incoming plane waves. This interaction is called Reflection
Law which is one of the Snell’s law derivations. For brevity, these curves (in black) are named Snell in
Fig. 3. The red curves (called desired patterns) are the scattering patterns of the array in the orthogonal
polarization with respect to that of incoming wave. In fact, red curves show the array performance in
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Table 2. Antenna dimensions.

Parameter Value

D 0.6 λ0

X, Y 48.9mm

L1 309mm

L2 407mm

L3 136mm

L4 38mm

Lq 28.6mm

W 4.8mm

Wq 0.6mm

Table 3. Incident and expected reflection waves specifications.

Incident angle (φ, θ) Polarization Expected reflection angle (φ, θ) Polarization

(270◦, 5◦) Horizontal (270◦, 15◦) Vertical

(270◦, 15◦) Horizontal (270◦, 25◦) Vertical

(270◦, 25◦) Horizontal (270◦, 35◦) Vertical

(285◦, 5◦) Horizontal (285◦, 15◦) Vertical

(285◦, 15◦) Horizontal (285◦, 25◦) Vertical

(285◦, 25◦) Horizontal (285◦, 35◦) Vertical

(300◦, 5◦) Horizontal (300◦, 15◦) Vertical

(300◦, 15◦) Horizontal (300◦, 25◦) Vertical

(300◦, 25◦) Horizontal (300◦, 35◦) Vertical

different conditions (different angles of incident waves). The incident wave is a plane wave which is
defined with its predetermined specifications in the software to be applied to the structure in order to
read its RCS and examine its performance. As it is clear in this figure, the reflected signal angles (red
graphs) are properly pointed on expected values. It can be seen in Fig. 3 that the reflected patterns’
levels are smaller than those of incident ones. However, it cannot be assumed as a problem because the
incident and reflected signals are isolated through orthogonal polarizations and do not interfere each
other.

3.3. Limitations in Design Procedure

If the graphs in Fig. 3 are observed more meticulously, it can be seen that although the reflection
patterns resulting from incident waves with φ = 270◦ are decently pointed on expected angles, there
are some mismatches when it comes to incident waves with φ = 285◦ and φ = 300◦. For example,
considering incident signal located at (φ, θ) = (300◦, 15◦) (Fig. 3(h)), according to system considerations
the reflection signal should be pointed at (φ, θ) = (300◦, 25◦). However, the corresponding simulation
result shows that the reflection signal pointed at (φ, θ) = (300◦, 33◦). In fact, as the incident signal angle
gets away from the first assumption ((φ, θ) = (270◦, 15◦)), this mismatch error increases. This result
is firstly due to the nonlinear nature of the theory behind the idea. It means that this theory is based
on every single incoming and expected outgoing signal angles (not their difference) in the array. Hence,
if we want to design the structure in an absolute exact manner, any incoming and desired reflected
signal angle leads to different corresponding phase shifts in the inter-connected array elements. In this
way, we have to propose a new structure for any initial design parameters, which is not applicable.



108 Fallah, Bahar, and Sedighy

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Scattering patterns of proposed array in two orthogonal polarizations. Incident wave angles
(φ, θ) are (a) (270◦, 5◦), (b) (270◦, 15◦), (c) (270◦, 25◦), (d) (285◦, 5◦), (e) (285◦, 15◦), (f) (285◦, 25◦),
(g) (300◦, 5◦), (h) (300◦, 15◦), (i) (300◦, 25◦).

However, with the initial angles close enough to the first assumption, the deviation from the initial
design is negligible, and the proposed design can be utilized in that angles’ interval. These slight phase
shift deviations lead to slight deviations in desired reflected angles as the incident wave gets away from
the first assumption. Considering this problem in the structure, it is clear that the proposed array
performance is acceptable when the incident signal angles are close enough to the first assumption.

Figure 4 shows the different electrical lengths needed for 10-degree spatial shift in θ-plane with

Figure 4. Electrical phase differences between element pairs in (φ, θ) coordination for 10◦ spatial shift
in θ-plane.
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respect to incident angle in all of the (φ, θ) coordinates resulting from (6). Since the first assumption
led to the electrical length of −35.38◦, the acceptable zones, at which incident signal can be applied,
are those near enough the first assumption (−30◦ to −40◦ in the color bar). Furthermore, it is obvious
that those acceptable zones located in 90◦ ≤ θ ≤ 180◦ cannot be applied on the structure because their
locations lie beneath it. Hence, the angles with 270◦ ≤ φ ≤ 300◦ and 5◦ ≤ θ ≤ 30◦ will lead to decent
results in this structure.

4. CONCLUSION

In this paper, a planar passive microstrip retrodirective antenna array is proposed with the capability
of reradiating the incoming signal to a predetermined spatial angle in θ and φ planes. Based on the
theory, a specific spatial shift was chosen, and corresponding electrical and physical lengths for inter-
connecting elements were calculated, applied on the structure and simulated to prove the idea and
array performance. Two orthogonal polarizations were considered in the array structure in order to
make isolation between incoming and reradiating signals. Finally, some limitations in the theory behind
the idea were investigated which need to be considered in design procedure. Further work is expected
to be focused on enhancing the array performance in terms of increasing the reradiated signal level in
desired angle, accepting wider range of incoming signal angles, decreasing the non-radiating surfaces
and so on.
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