Vol. 114
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-10-17
A Comparison of Two Generalizations to the Linear Sampling Method for Inverse Scattering
By
Progress In Electromagnetics Research M, Vol. 114, 49-57, 2022
Abstract
The linear sampling method (LSM) is a very popular method for determining the boundary of an object from the scattered field. However, there are instances where LSM provides the convex hull of the boundary rather than the true boundary. There are two common generalizations to LSM: the Generalized Linear Sampling Method (GLSM) and the Multipoles-based Linear Sampling Method (MLSM). In this paper, the ability of GLSM and MLSM to overcome some of the deficiencies of LSM are investigated. It is found that GLSM may be ideal for imaging thin features of scatterers and that MLSM can provide an improvement over LSM in a more general sense. GLSM may also require user input to adjust the indicator function whereas MLSM does not appear to rely as much on indicator function adjustments for adequate results.
Citation
Yeasmin Sultana, and James Richie, "A Comparison of Two Generalizations to the Linear Sampling Method for Inverse Scattering," Progress In Electromagnetics Research M, Vol. 114, 49-57, 2022.
doi:10.2528/PIERM22081807
References

1. Pastorino, M. and A. Randazzo, Microwave Imaging: Methods and Applications, Artech House, Boston, MA, 2018.

2. Tobon Vasquez, J. A., R. Scapaticci, G. Turvani, M. Ricci, L. Farina, A. Litman, M. R. Casu, L. Crocco, and F. Vipiana, "Noninvasive inline food inspection via microwave imaging technology: An application example in the food industry," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 18-32, 2020, doi: 10.1109/MAP.2020.3012898.
doi:10.1109/MAP.2020.3012898

3. Neira, L. M., B. D. Van Veen, and S. C. Hagness, "High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6002-6014, 22017, doi: 10.1109/TAP.2017.2751668.
doi:10.1109/TAP.2017.2751668

4. Hopfer, M., R. Planas, A. Hamidipour, T. Henriksson, and S. Semenov, "Electromagnetic tomography for detection, differentiation, and monitoring of brain stroke: A virtual data and human head phantom study," IEEE Antennas and Propagation Magazine, Vol. 59, No. 5, 86-97, 2017, doi: 10.1109/MAP.2017.2732225.
doi:10.1109/MAP.2017.2732225

5. Salucci, M., G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, "Electromagnetic subsurface prospecting by a multifocusing inexact Newton method within the second-order Born approximation," J. Opt. Soc. Am. A, Vol. 31, No. 6, 1167-1179, Jun. 2014, doi: 10.1364/JOSAA.31.001167.
doi:10.1364/JOSAA.31.001167

6. Palmeri, R., M. T. Bevacqua, A. F. Morabito, and T. Isernia, "Design of artifiial-material-based antennas using inverse scattering techniques," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7076-7090, 2018, doi: 10.1109/TAP.2018.2871707.
doi:10.1109/TAP.2018.2871707

7. Bozza, G., M. Brignone, and M. Pastorino, "Aplication of the no-sampling linear sampling method to breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 10, 2525-2534, 2010, doi: 10.1109/TBME.2010.2055059.
doi:10.1109/TBME.2010.2055059

8. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704

9. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, Vol. 19, 105-137, 2003.
doi:10.1088/0266-5611/19/6/057

10. Agarwal, K. and Y. Zhong, "A multipole-expansion based linear sampling method for solving inverse scattering problems," Optics Express, Vol. 12, No. 6, 6366-6381, Mar. 2010.
doi:10.1364/OE.18.006366

11. Crocco, L., L. Di Donato, I. Catapano, and T. Isernia, "An improved simple method for imaging the shape of complex targets," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 843-851, Feb. 2013.
doi:10.1109/TAP.2012.2220329

12. Potthast, R., "A study on orthogonality sampling," Inverse Problems, Vol. 26, No. 7, 074 015, 2010.
doi:10.1088/0266-5611/26/7/074015

13. Akıncı, M. N., M. Çayören, and I. Akduman, "Near-field orthogonality sampling method for microwave imaging: Theory and experimental verifiation," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 8, 2489-2501, Aug. 2016.
doi:10.1109/TMTT.2016.2585488

14. Chen, X., Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, Hoboken, NJ, 2018.
doi:10.1002/9781119311997

15. Bevacqua, M. T. and R. Palmeri, "Qualitative methods for the inverse obstacle problem: A comparison on experimental data," Journal of Imaging, Vol. 5, No. 4, 2019, ISSN: 2313-433X, doi: 10.3390/jimaging5040047, [Online]. Available: https://www.mdpi.com/2313-433X/5/4/47.
doi:10.3390/jimaging5040047

16. Bevacqua, M. and T. Isernia, "Shape reconstruction via equivalence principles, constrained inverse source problems and sparsity promotion," Progress In Electromagnetics Research, Vol. 158, 37-48, 2017.
doi:10.2528/PIER16111404

17. Richmond, J., "Scattering by a dielectric cylinder of arbitrary crossectional shape," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 3, 334-341, May 1965.
doi:10.1109/TAP.1965.1138427

18. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, Jan. 2010, doi: doi:10.1016/j.cpc.2009.11.008.
doi:10.1016/j.cpc.2009.11.008

19. Cakoni, F., D. Colton, and P. Monk, "Qualitative methods in inverse electromagnetic scattering theory," IEEE AP Magazine, Vol. 59, No. 5, 24-33, Oct. 2017.

20. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1431-1436, May 2007.
doi:10.1109/TAP.2007.895563

21. Crocco, L., I. Catapano, L. Di Donato, and T. Isernia, "The linear sampling method as a way to quantitative inverse scattering," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 1844-1853, Apr. 2012.
doi:10.1109/TAP.2012.2186250