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A Comparison of Two Generalizations to the Linear Sampling
Method for Inverse Scattering
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Abstract—The linear sampling method (LSM) is a very popular method for determining the boundary
of an object from the scattered field. However, there are instances where LSM provides the convex
hull of the boundary rather than the true boundary. There are two common generalizations to LSM:
the Generalized Linear Sampling Method (GLSM) and the Multipoles-based Linear Sampling Method
(MLSM). In this paper, the ability of GLSM and MLSM to overcome some of the deficiencies of LSM
are investigated. It is found that GLSM may be ideal for imaging thin features of scatterers and that
MLSM can provide an improvement over LSM in a more general sense. GLSM may also require user
input to adjust the indicator function whereas MLSM does not appear to rely as much on indicator
function adjustments for adequate results.

1. INTRODUCTION

Techniques in inverse scattering use the measured scattered field to estimate the boundary and
composition of unknown objects. Approaches that solve the full problem (both the boundary and
composition) are denoted quantitative approaches whereas methods that estimate only some of the
object’s characteristics are called qualitative methods.

There are many applications of inverse scattering methods, both quantitative and qualitative.
Several areas of application are described in [1]. Quantitative methods have been applied to food
quality [2], breast imaging [3], brain stroke detection [4], and subsurface prospecting [5]. Recently,
quantitative inverse scattering methods have been applied to antenna design as well [6]. Qualitative
method applications include breast imaging [7] and ground penetrating radar [8].

The computational burden of the qualitative problem is often much smaller than solving the full
quantitative problem. Some qualitative methods have a common trait: they estimate the boundary of
the object by sampling the domain and use an indicator function to predict whether each sample point is
inside or outside the scatterer. An early technique is the Linear Sampling Method (LSM) [9]. There are
other methods in this category, including the Multipoles-based Linear Sampling Method (MLSM) [10]
and a Generalized LSM (GLSM) [11]. In most of these methods, a linear ill-posed problem is solved at
each sample point. A more recently reported method, the orthogonal sampling method (OSM) [12] and
its near-field extension (NF-OSM) [13] are qualitative methods that are very different from the LSM
family of methods.

These qualitative methods are not iterative and therefore usually do not adequately solve the
problem. The sampling methods are also more susceptible to noise. Taken together, these shortcomings
mean that determination of the boundary may be difficult [14]. However, the information obtained from
the sampling methods can still be useful, for example to limit the support domain of the scatterer in a
quantitative procedure.

Received 18 August 2022, Accepted 14 October 2022, Scheduled 17 October 2022
* Corresponding author: James E. Richie (james.richie@marquette.edu).
The authors are with the Electrical and Computer Engineering Department, Marquette University, USA.



50 Sultana and Richie

In [15], the performance of three qualitative methods are compared: The LSM, the OSM, and
Boundary retrieval through Inverse source and Sparsity (B-IS) [16]. In this work, results using LSM,
GLSM, and MLSM will be compared. Both GLSM and MLSM are closely related to the original LSM
method; however, each technique attempts to improve the effectiveness of LSM when determining the
boundary of an object. Each method will be described and used to image synthetic data from scatterers.

There are several different methods for computing the scattered data. One method uses the moment
method [17]. More recently, other numerical techniques have been developed. The MEEP software [18]
is a finite-difference time-domain solver that is very versatile. In this work, all field computations are
done using MEEP.

2. THE LINEAR SAMPLING METHOD AND ITS GENERALIZATIONS

A typical inverse scattering scenario is shown in Fig. 1. The measurements can be over many scattered
directions with multiple incident field directions. In addition, the scattered field data can be at a single
frequency or consist of multi-frequency measurements. In this work, there is a collection of antennas
surrounding the unknown object. The object is inside some background permittivity, ϵb (here, free space

is assumed). For each experiment, one antenna transmits a fixed frequency signal in the k⃗ direction
with TMz polarization and the field is measured at M locations, denoted as r⃗m. The angle of incidence
is denoted as ϕi

n. There are N experiments corresponding to N incident field directions. The result is
a matrix of scattered electric field values, Es(r⃗m, ϕi

n) where each column of the matrix corresponds to
one experiment. An exp{jωt} time dependence is assumed throughout.
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Figure 1. Geometry for the data collection. Each ‘A’ represents a transmit or receive antenna.

2.1. The Linear Sampling Method

The linear sampling method (LSM) [9, 19, 20] is a qualitative approach to inverse scattering. LSM can
estimate the boundary of an unknown object by choosing a grid of sample points (r⃗p) within the object
domain and computing an indicator value for each sample point. The indicator is used to decide whether
each sample point on the grid is inside or outside the object.

In LSM, a linear combination of experiments is sought that results in a scattered field that is
focused [20] around the sample point. The norm of the vector that describes the linear combination is
the basis for the indicator. Mathematically,

N∑
n=1

ξn(r⃗p)E
s(r⃗m, ϕi

n) = Go(r⃗m, r⃗p) (1)
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where Go(r⃗m, r⃗p) is the Green’s function describing the radiation observed at r⃗m due to a point source
located at r⃗p:

Go(r⃗m, r⃗p) = H(2)
o (kb|r⃗m − r⃗p|) (2)

where kb is the wavenumber for the background material, and H
(2)
o is the Hankel function of the second

kind of order zero, representing outgoing waves. The vector ξn represents the linear combination of
experiments that results in a scattered field at all r⃗m that matches the field of a point source at r⃗p.

Equation (1) is generally ill-posed; therefore, some regularization must be applied to determine the
vector ξn. LSM as implemented in [20] uses the singular value decomposition (SVD) on Es. Consider
the matrix equation for a single r⃗p:

Esξ = Go (3)

where Es is an M ×N matrix; ξ is a vector of length N ; and Go is a vector of length M . Apply SVD

Es = V SUH → ξ = V HS−1UGo (4)

where S is a diagonal matrix of the singular values snn. To regularize the solution, replace the S−1

entries with
snn

s2nn + α2
(5)

where α is the regularization parameter, chosen as α = 0.01s11. Note that the SVD step is performed
once on the scattered field matrix. The same SVD solution is used for each r⃗p in the domain.

The entries of the vector ξ also have a physical interpretation related to the concept of ‘virtual
experiments’ [21]. The values correspond to the amplitude and phase of the excitation at each of the
N transmit locations. The linear combination of experiments with ξ as weights produces a scattered
field that replicates the field at the observation locations of a point source situated at r⃗p. In general,
the scattered field is focused near r⃗p and is typically circularly symmetric about r⃗p.

To illustrate some of these ideas, a data matrix is computed using MEEP [18] for a scatterer with
elliptical cross section (major axis a = 0.5λb, minor axis b = 0.25λb) with ϵr = 2.0. Eq. (1) is solved for
a sample point at the origin (within the object). A virtual experiment is simulated via MEEP using the
ξ vector obtained. The total field for the virtual experiment is shown in Fig. 2(a) and the scattered field
is shown in Fig. 2(b). The location of the transmitters are on a circle of radius 2λb. Some transmitter
locations can be seen in Fig. 2(a). Fig. 2(b) clearly shows that the scattered field is roughly circular
near the receiver locations (which are identical to the transmitter locations).

The vector ξ is used to determine whether the point r⃗p is inside or outside the object by using an
indicator function. The norm of ξn(r⃗p) (see Eq. (1)) is used as the indicator function. Small values

(a) (b)

Figure 2. Virtual experiment fields with r⃗p at origin. Scatterer has an elliptical cross section: (a) total
field; (b) scattered field with scatterer shown in gray.
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of ∥ξ∥2 are considered to be inside the object and large values are outside the object. Specifically, the
indicator function used with LSM is

ILSM = − log10
∥ξ∥2

∥ξ∥2max

(6)

where it is noted that small values for ∥ξ∥2 correspond to r⃗p within the object and result in large positive
ILSM . To distinguish between ‘inside’ and ‘outside’, a suitable threshold is chosen. For example, r⃗p is
inside the object if ILSM > δ ILSM,max where 0 < δ < 1. The choice of δ is often heuristic and becomes
more difficult in the presence of noise [14]. In this work, the choice for δ will be analyzed for a number
of scenarios in LSM, GLSM, and MLSM.

The LSM method is very versatile and popular; however, there are object shapes that LSM may
give a boundary that is not the true shape of the scatterer [11]. It is for this reason that the GLSM
and MLSM techniques have been developed.

2.2. The Generalized Linear Sampling Method [11]

In GLSM, (1) is modified to:

N∑
n=1

ξe,oℓ,n(r⃗p)E
s(r⃗m, ϕi

n) = Ge,o
ℓ (r⃗m, r⃗p) (7)

where the right hand side is now an even/odd multipole of order ℓ:

Ge,o
ℓ (r⃗m, r⃗p) = H

(2)
ℓ (kb|r⃗m − r⃗p|)cossin (ℓϕ) (8)

where the even (e) version corresponds to the upper (cos) term, and the odd version corresponds to the
lower (sin) term.

Switching from a monopole to a multipole introduces additional considerations. Scattering from
a very small object typically results in a monopole scattered field. For a multipole, the object must
have dimensions large enough to support multipole radiation. For a source within a ball of radius a,
the largest multipole order that can be supported is on the order of n = kba.

Denote the ball of radius a as the support ball. There are two implications of the support ball.
First, using a multipole in GLSM means that the sample point can not be too close to the edge of the
object (or insufficient support is present). Second, sample points in thin objects or objects with thin
features may not be capable of supporting some multipole configurations.

In many cases, the LSM monopole is sufficient. LSM uses test points and determines if a singularity
can be created at the test point using the scattered field data. For convex object boundaries, this works
well. Define the convex hull of the object boundary as the smallest convex shape that encloses the
boundary. Where the object boundary has a concave portion, points between the object boundary and
the convex hull can support zero order singularities as a consequence of the equivalence principle. This
is formally demonstrated in Appendix B of [11] for an annulus; however, a partial annulus could be
considered as an approximation to the concave section of an object. Therefore, the use of multipoles
may be helpful in finding a more accurate object shape even for objects with a convex hull significantly
different from the object boundary.

Using higher order poles in GLSM can help identify regions that are hollow or concave by choosing
an appropriate indicator function. In [11], the indicator is defined as

IGLSM = − log10
ΞP

ΞP,max
(9)

where

ΞP =
P∏
ℓ=1

∥ξ∥2

∥ξeℓ∥2
∥ξ∥2

∥ξoℓ ∥2
(10)

∥ξe,oℓ ∥2 is the norm of the vector found in (7), and ∥ξ∥2 is the norm of the LSM result. The form of
IGLSM is similar to ILSM in (6). A similar, suitable threshold (δ) for IGLSM is chosen to distinguish
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between ‘inside’ and ‘outside’. Consider a thin scatterer with a cross section that is mostly parallel to
the y axis. A y-directed dipole can be supported by the scatterer and ξo1 would have a small norm for
some sample points. The indicator function would then correctly interpret r⃗p as inside the object.

The concept of virtual experiments can be applied to the generalized case as well. Fig. 3(a) shows
the total field of a virtual experiment derived from ξe1(r⃗p) with r⃗p at the origin. Fig. 3(b) shows the
corresponding scattered field. Results were obtained using MEEP. The object is the same elliptical
scatterer that was used for Fig. 2. In Fig. 3, one can see the ϕ variation due to the use of a higher order
pole in GLSM.

(a) (b)

Figure 3. Virtual experiment fields for elliptical scatterer using even dipole in GLSM. r⃗p is at the
origin: (a) total field; (b) scattered field, with object shown in gray.

2.3. The Multipoles-Based Linear Sampling Method [10]

In MLSM, the far-field data is expanded in a multipole expansion about the sample point. The
expansion is truncated to perform regularization. The expansion coefficients are then used to find
a linear combination of experiments that results in a large monopole contribution while the other poles
kept in the expansion are forced to combine to zero field.

Mathematically, the first step is written as:

Es(r⃗m, ϕi
n) =

L∑
ℓ=−L

αℓ(r⃗p, ϕ
i
n)H

(2)
ℓ (kb|r⃗m − r⃗p|)ejℓArg(r⃗m−r⃗p) (11)

The Es(r⃗m, ϕi
n) term is the measured data, and the H

(2)
ℓ (kb|r⃗m − r⃗p|)ejℓArg(r⃗m−r⃗p) term is cast as a

matrix to solve for the unknown multipole expansion coefficients, αℓ. There are 2L+ 1 coefficients for
each of N experiments. A pseudo-inverse solution to find αℓ is recommended in [10]. The series is
truncated at L to perform regularization. Often, L is chosen to be 1 so that only the monopole and the
two dipole terms are kept in the expansion. This has been observed to be sufficient in most cases. A
small L also keeps the computation time per sample point smaller [10]. In this work, L = 1 is sufficient
to obtain satisfactory results in all cases. However, we have observed that larger objects may require
larger L to obtain similar accuracy.

The second step consists of combining the expansions in a linear combination that preserves the
monopole but extinguishes the higher order pole contributions:

Ah = D (12)

where A is the (2L + 1) ×N matrix of multipole coefficients αℓ; h is the unknown linear combination
of N experiments; and D is a known vector with 2L+ 1 entries all of which are zero except the center
element is one.

The concept of virtual experiments can be applied to the multipoles-based case as well. Fig. 4
shows virtual experiment results using MEEP and the h vector found using L = 1 and r⃗p at the origin
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(a) (b)

Figure 4. Virtual experiment fields with r⃗p at origin: (a) total field; (b) scattered field with scatterer
in gray.

in MLSM. The scatterer is the same as the virtual experiment results in Figs. 2 and 3. Fig. 4 is similar
to Fig. 2. In each case, the virtual experiment should result in the fields of a monopole located at
the origin. However, in Fig. 2, LSM is used and in Fig. 4 the data is pre-conditioned by computing
a truncated multipole expansion. The ϕ symmetry is not as precise in the MLSM case, as seen in
Fig. 4(b).

The indicator function is very similar to the LSM case:

IMLSM = − log10
∥h∥2

∥h∥2max

(13)

and it has the same characteristics as the other indicators discussed previously. In [10], it is suggested
that the indicator function be interpreted where r⃗p is within the object if IMLSM is within δ = 0.8 of
the maximum.

In LSM and GLSM, regularization occurs in the SVD calculation, where the singular values are
adjusted using a regularization parameter, α. The SVD is computed once and used for every sample
point r⃗p. In MLSM, the data is regularized by truncating the multipole expansion of the data relative
to the sample point. However, in MLSM a multipole expansion is computed for every sample point r⃗p.

3. SIMULATION RESULTS

In this section, simulation will be used to create synthetic data and to demonstrate some of the results
from the previous section. Each data matrix is computed using MEEP [18], an open-source, finite-
difference time-domain electromagnetic solver.

The first scatterer has a simple elliptical cross section, with major axis a = 0.5λ and minor axis
b = 0.25λ. The relative permittivity (ϵr) is 2.0. This is the scatterer used to simulate the virtual
experiments of Figs. 2, 3, and 4. The results are summarized in Fig. 5. Each graphic in Fig. 5 shows
indicator function data on a gray scale and the outline of the scatterer. Also shown is the approximate
boundary found using each method. The LSM results (Fig. 5(a)) for the elliptical scatterer are very
good. MLSM (Fig. 5(b)) appears to estimate the object slightly larger along with GLSM when P = 2
(Fig. 5(c)). The GLSM, P = 3 case (Fig. 5(d)) appears to be very good except for the spatial oscillations
in the estimated boundary (which also appear in the P = 2 case).

Results for an S-shaped scatterer with ϵr = 2.0 are shown in Fig. 6, using the same format as Fig. 5.
In the S-shaped scatterer, LSM has difficulty determining the shape accurately, as may be expected
from the non-convex features. The MLSM reconstruction is very good, but neither GLSM case images
the interior vertical section. Note again the estimated boundary oscillations in the GLSM case.

Figure 7 shows the results for a thin U shaped target and a similar but thicker U shaped target.
The thin target is not well-reconstructed in the case of MLSM (Fig. 7(a)); however, GLSM appears to
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Figure 5. Results for elliptical scatterer, showing gray scale of indicator function, the exact boundary
and the estimated boundary for: (a) LSM case; (b) MLSM case; (c) GLSM result with P = 2; (d)
GLSM result with P = 3.
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Figure 6. Results for S-shaped scatterer, showing gray scale of indicator function, the exact boundary
and the estimated boundary for: (a) LSM case; (b) MLSM case; (c) GLSM result with P = 2; (d)
GLSM result with P = 3.
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Figure 7. (a) MLSM results for thin U; (b) GLSM result for thin U with P = 2; (c) MLSM boundary
estimate for thick U; (d) GLSM result for thick U with P = 2.

perform well when the target is very thin (Fig. 7(b)). The MLSM results for the thick target (Fig. 7(c))
are much better than the MLSM results for the thin U shaped scatterer. However, GLSM results for
the thick U (Fig. 7(d)) do not improve over what was seen in the previous targets.

The thin U-shaped scatterer has very interesting results. The GLSM result shown in Fig. 7(b) is a
much better image compared to the MLSM result in Fig. 7(a). The use of GLSM for very thin features
is supported by these results. Thin features may include gaps and/or long thin cracks in objects.

In addition to the visual results provided above, it is also important to consider whether the
reconstruction can be obtained without user intervention to improve or optimize the results. For the
qualitative methods considered here, the cutoff that determines inside vs. outside the object may require
user input to obtain satisfactory results. We now discuss the relative stability of choices of δ. Recall that
δ is the number between 0 and 1 that delineates between inside and outside for the indicator functions.
Recall I indicates inside when I > δImax. See (6), (9), and (13) for the I indicator functions used.

The value of δ for each figure is shown in Table 1 along with the reconstruction technique, either
LSM, MLSM, or GLSM2 or GLSM3, depending on P . Examination of the entries in Table 1 shows that
the MLSM reconstructions have relatively constant δ at 0.8. This is also suggested in [10]. However, the
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Table 1. δ values for Figures 5–7.

Fig. No. a b c d

5 0.8 (LSM) 0.8 (MLSM) 0.7 (GLSM2) 0.7 (GLSM3)

6 0.8 (LSM) 0.8 (MLSM) 0.65 (GLSM2) 0.65 (GLSM3)

7 0.8 (MLSM) 0.7 (GLSM2) 0.8 (MLSM) 0.55 (GLSM2)

GLSM reconstructions have values of δ in Table 1 that range from 0.55 to 0.7. Therefore, the GLSM
reconstruction quality is more reliant on an appropriate choice for δ.

The techniques presented here are not limited to a single object. Multiple objects can be resolved
in some cases. As an example of multiple objects, consider the reconstruction of two rods. Results are
shown in Fig. 8. One rod is filled (ϵr = 2) and one rod is hollow. GLSM requires δ = 0.35 to obtain
satisfactory results, shown in Fig. 8(b). The MLSM results using δ = 0.8 are much better, as shown in
Fig. 8(a). Clearly, the MLSM method is more robust with respect to inside/outside (i.e., δ) threshold,
even for multiple objects.
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Figure 8. (a) MLSM boundary estimate of two rod object (δ = 0.8); (b) GLSM result using P = 2
and δ = 0.35.

4. CONCLUSIONS

In this paper, the LSM method is presented along with two published generalizations. A suitable set
of objects was chosen to compare the reconstruction results from each method. Scattered data was
computed using MEEP, a FD-TD method. Results indicate that the GLSM method may be more
useful in the reconstruction of very thin features. The MLSM method, however, appears to be more
practical for the general case and admits a more stable threshold used in the indicator function to obtain
consistent results.
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