Vol. 175
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-09-27
Few-Cycle Electromagnetic Pulses with Finite Energy and Bounded Angular Momentum: Analysis of the Skyrmionic Texture at Focal Plane
By
Progress In Electromagnetics Research, Vol. 175, 127-137, 2022
Abstract
Exact solutions to Maxwell equations with topological charge based on a modification to Brittingham's single cycle pulses are analyzed demonstrating that they have finite values of energy, momentum and angular momentum. Moreover, the ratio of angular momentum to energy is bounded due to the dependence of the mean frequency on topological charge. We have also analyzed the skyrmionic texture of the electric and magnetic fields showing that it is possible to obtain skyrmionic numbers higher than one for the magnetic field by means of a superposition of pulses with different topological charges and null skyrmionic number.
Citation
Luis Carretero, Pablo Acebal, and Salvador Blaya, "Few-Cycle Electromagnetic Pulses with Finite Energy and Bounded Angular Momentum: Analysis of the Skyrmionic Texture at Focal Plane," Progress In Electromagnetics Research, Vol. 175, 127-137, 2022.
doi:10.2528/PIER22071603
References

1. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181

2. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, Feb. 1989.
doi:10.1103/PhysRevA.39.2005

3. Hellwarth, R. W. and P. Nouchi, "Focused one-cycle electromagnetic pulses," Phys. Rev. E, Vol. 54, 889-895, Jul. 1996.
doi:10.1103/PhysRevE.54.889

4. Brittingham, J., "Focus wave modes in homogeneous Maxwell's equations --- TE-mode," 1982 Antennas and Propagation Society International Symposium, Vol. 20, 656-660, 1982.
doi:10.1109/APS.1982.1148820

5. Brittingham, J. N., "Focus waves modes in homogeneous Maxwell's equations: Transverse electric mode," Journal of Applied Physics, Vol. 54, No. 3, 1179-1189, 1983.
doi:10.1063/1.332196

6. Sezginer, A., "A general formulation of focus wave modes," Journal of Applied Physics, Vol. 57, No. 3, 678-683, 1985.
doi:10.1063/1.334712

7. Zdagkas, A., N. Papasimakis, V. Savinov, M. R. Dennis, and N. I. Zheludev, "Singularities in the flying electromagnetic doughnuts," Nanophotonics, Vol. 8, No. 8, 1379-1385, 2019.
doi:10.1515/nanoph-2019-0101

8. Shen, Y., Y. Hou, N. Papasimakis, and N. I. Zheludev, "Supertoroidal light pulses as electromagnetic skyrmions propagating in free space," Nature Communications, Vol. 12, 5891, Oct. 2021.

9. Raybould, T., V. Fedotov, N. Papasimakis, I. Youngs, and N. Zheludev, "Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures," Opt. Express, Vol. 24, 3150-3161, Feb. 2016.
doi:10.1364/OE.24.003150

10. Zdagkas, A., C. McDonnell, J. Deng, Y. Shen, G. Li, T. Ellenbogen, N. Papasimakis, and N. I. Zheludev, "Observation of toroidal pulses of light," Nature Photonics, Vol. 16, 523-528, Jul. 2022.

11. Lekner, J., "Electromagnetic pulses which have a zero momentum frame," Journal of Optics A: Pure and Applied Optics, Vol. 5, L15-L18, Apr. 2003.
doi:10.1088/1464-4258/5/4/101

12. Lekner, J., "Electromagnetic pulses, localized and causal," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 474, No. 2209, 20170655, 2018.
doi:10.1098/rspa.2017.0655

13. Lekner, J., "Angular momentum of electromagnetic pulses," Journal of Optics A: Pure and Applied Optics, Vol. 6, S128-S133, Feb. 2004.
doi:10.1088/1464-4258/6/3/021

14. Lekner, J., "Localized electromagnetic pulses with azimuthal dependence," Journal of Optics A: Pure and Applied Optics, Vol. 6, 711-716, Jun. 2004.
doi:10.1088/1464-4258/6/7/009

15. Lekner, J., Theory of Electromagnetic Pulses, 2053-2571, Morgan and Claypool Publishers, 2018.

16. Ornigotti, M., C. Conti, and A. Szameit, "Effect of orbital angular momentum on nondiffracting ultrashort optical pulses," Phys. Rev. Lett., Vol. 115, 100401, Sep. 2015.
doi:10.1103/PhysRevLett.115.100401

17. Forbes, A., "Structured light from lasers," Laser & Photonics Reviews, Vol. 13, No. 11, 1900140, 2019.
doi:10.1002/lpor.201900140

18. Sabatyan, A. and J. Rafighdoost, "Azimuthal phase-shifted zone plates to produce petal-like beams and ring lattice structures," J. Opt. Soc. Am. B, Vol. 34, 919-923, May 2017.
doi:10.1364/JOSAB.34.000919

19. Barnett, S. M. and L. Allen, "Orbital angular momentum and nonparaxial light beams," Optics Communications, Vol. 110, No. 5, 670-678, 1994.
doi:10.1016/0030-4018(94)90269-0

20. Porras, M. A., "Upper bound to the orbital angular momentum carried by an ultrashort pulse," Phys. Rev. Lett., Vol. 122, 123904, Mar. 2019.
doi:10.1103/PhysRevLett.122.123904

21. W. R. Inc. "Mathematica, Version 13.0.0,", Champaign, IL, 2021.

22. Tsesses, S., E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, "Optical skyrmion lattice in evanescent electromagnetic fields," Science, Vol. 361, No. 6406, 993-996, 2018.
doi:10.1126/science.aau0227

23. Deng, Z.-L., T. Shi, A. Krasnok, X. Li, and A. Alu, "Observation of localized magnetic plasmon skyrmions," Nature Communications, Vol. 13, No. 8, Jan. 2022.

24. Nagaosa, N. and Y. Tokura, "Topological properties and dynamics of magnetic skyrmions," Nature Nanotechnology, Vol. 8, 899-911, Dec. 2013.
doi:10.1038/nnano.2013.243

25. Lin, W., Y. Ota, Y. Arakawa, and S. Iwamoto, "Microcavity-based generation of full poincaré beams with arbitrary skyrmion numbers," Phys. Rev. Research, Vol. 3, 023055, Apr. 2021.
doi:10.1103/PhysRevResearch.3.023055

26. Gergidis, L. N., V. D. Stavrou, D. Kourounis, and I. A. Panagiotopoulos, "Micromagnetic simulations study of skyrmions in magnetic FePt nanoelements," Journal of Magnetism and Magnetic Materials, Vol. 481, 2019.

27. Gobel, B., I. Mertig, and O. A. Tretiakov, "Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles," Physics Reports, Vol. 895, 1-28, 2021, Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles.
doi:10.1016/j.physrep.2020.10.001