1. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181
2. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, Feb. 1989.
doi:10.1103/PhysRevA.39.2005
3. Hellwarth, R. W. and P. Nouchi, "Focused one-cycle electromagnetic pulses," Phys. Rev. E, Vol. 54, 889-895, Jul. 1996.
doi:10.1103/PhysRevE.54.889
4. Brittingham, J., "Focus wave modes in homogeneous Maxwell's equations --- TE-mode," 1982 Antennas and Propagation Society International Symposium, Vol. 20, 656-660, 1982.
doi:10.1109/APS.1982.1148820
5. Brittingham, J. N., "Focus waves modes in homogeneous Maxwell's equations: Transverse electric mode," Journal of Applied Physics, Vol. 54, No. 3, 1179-1189, 1983.
doi:10.1063/1.332196
6. Sezginer, A., "A general formulation of focus wave modes," Journal of Applied Physics, Vol. 57, No. 3, 678-683, 1985.
doi:10.1063/1.334712
7. Zdagkas, A., N. Papasimakis, V. Savinov, M. R. Dennis, and N. I. Zheludev, "Singularities in the flying electromagnetic doughnuts," Nanophotonics, Vol. 8, No. 8, 1379-1385, 2019.
doi:10.1515/nanoph-2019-0101
8. Shen, Y., Y. Hou, N. Papasimakis, and N. I. Zheludev, "Supertoroidal light pulses as electromagnetic skyrmions propagating in free space," Nature Communications, Vol. 12, 5891, Oct. 2021.
9. Raybould, T., V. Fedotov, N. Papasimakis, I. Youngs, and N. Zheludev, "Focused electromagnetic doughnut pulses and their interaction with interfaces and nanostructures," Opt. Express, Vol. 24, 3150-3161, Feb. 2016.
doi:10.1364/OE.24.003150
10. Zdagkas, A., C. McDonnell, J. Deng, Y. Shen, G. Li, T. Ellenbogen, N. Papasimakis, and N. I. Zheludev, "Observation of toroidal pulses of light," Nature Photonics, Vol. 16, 523-528, Jul. 2022.
11. Lekner, J., "Electromagnetic pulses which have a zero momentum frame," Journal of Optics A: Pure and Applied Optics, Vol. 5, L15-L18, Apr. 2003.
doi:10.1088/1464-4258/5/4/101
12. Lekner, J., "Electromagnetic pulses, localized and causal," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 474, No. 2209, 20170655, 2018.
doi:10.1098/rspa.2017.0655
13. Lekner, J., "Angular momentum of electromagnetic pulses," Journal of Optics A: Pure and Applied Optics, Vol. 6, S128-S133, Feb. 2004.
doi:10.1088/1464-4258/6/3/021
14. Lekner, J., "Localized electromagnetic pulses with azimuthal dependence," Journal of Optics A: Pure and Applied Optics, Vol. 6, 711-716, Jun. 2004.
doi:10.1088/1464-4258/6/7/009
15. Lekner, J., Theory of Electromagnetic Pulses, 2053-2571, Morgan and Claypool Publishers, 2018.
16. Ornigotti, M., C. Conti, and A. Szameit, "Effect of orbital angular momentum on nondiffracting ultrashort optical pulses," Phys. Rev. Lett., Vol. 115, 100401, Sep. 2015.
doi:10.1103/PhysRevLett.115.100401
17. Forbes, A., "Structured light from lasers," Laser & Photonics Reviews, Vol. 13, No. 11, 1900140, 2019.
doi:10.1002/lpor.201900140
18. Sabatyan, A. and J. Rafighdoost, "Azimuthal phase-shifted zone plates to produce petal-like beams and ring lattice structures," J. Opt. Soc. Am. B, Vol. 34, 919-923, May 2017.
doi:10.1364/JOSAB.34.000919
19. Barnett, S. M. and L. Allen, "Orbital angular momentum and nonparaxial light beams," Optics Communications, Vol. 110, No. 5, 670-678, 1994.
doi:10.1016/0030-4018(94)90269-0
20. Porras, M. A., "Upper bound to the orbital angular momentum carried by an ultrashort pulse," Phys. Rev. Lett., Vol. 122, 123904, Mar. 2019.
doi:10.1103/PhysRevLett.122.123904
21. W. R. Inc. "Mathematica, Version 13.0.0,", Champaign, IL, 2021.
22. Tsesses, S., E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, "Optical skyrmion lattice in evanescent electromagnetic fields," Science, Vol. 361, No. 6406, 993-996, 2018.
doi:10.1126/science.aau0227
23. Deng, Z.-L., T. Shi, A. Krasnok, X. Li, and A. Alu, "Observation of localized magnetic plasmon skyrmions," Nature Communications, Vol. 13, No. 8, Jan. 2022.
24. Nagaosa, N. and Y. Tokura, "Topological properties and dynamics of magnetic skyrmions," Nature Nanotechnology, Vol. 8, 899-911, Dec. 2013.
doi:10.1038/nnano.2013.243
25. Lin, W., Y. Ota, Y. Arakawa, and S. Iwamoto, "Microcavity-based generation of full poincaré beams with arbitrary skyrmion numbers," Phys. Rev. Research, Vol. 3, 023055, Apr. 2021.
doi:10.1103/PhysRevResearch.3.023055
26. Gergidis, L. N., V. D. Stavrou, D. Kourounis, and I. A. Panagiotopoulos, "Micromagnetic simulations study of skyrmions in magnetic FePt nanoelements," Journal of Magnetism and Magnetic Materials, Vol. 481, 2019.
27. Gobel, B., I. Mertig, and O. A. Tretiakov, "Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles," Physics Reports, Vol. 895, 1-28, 2021, Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles.
doi:10.1016/j.physrep.2020.10.001