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Few-Cycle Electromagnetic Pulses with Finite Energy and Bounded
Angular Momentum: Analysis of the Skyrmionic Texture

at Focal Plane

Luis Carretero*, Pablo Acebal, and Salvador Blaya

Abstract—Exact solutions to Maxwell equations with topological charge based on a modification to
Brittingham’s single cycle pulses are analyzed demonstrating that they have finite values of energy,
momentum, and angular momentum. Moreover, the ratio of angular momentum to energy is bounded
due to the dependence of the mean frequency on topological charge. We have also analyzed the
skyrmionic texture of the electric and magnetic fields showing that it is possible to obtain skyrmionic
numbers higher than the one for the magnetic field by means of a superposition of pulses with different
topological charges and null skyrmionic number.

1. INTRODUCTION

For a given solution ψ(r, t) to vacuum wave equation [1]:

∇2ψ(r, t)− 1

c2
∂2ψ(r, t)

∂t2
= 0 (1)

with c being the speed of light and ψ a complex function ψ = ψR + i ψI (ψR = ℜ[ψ(r, t)] and
ψI = ℑ[ψ(r, t)], where ℜ and ℑ are the real and imaginary parts of the function ψ), and the Hertz
potential can be defined as [2, 3]:

Πm = µ0 ψR,I(r, t) ẑ (2)

with µ0 being the permeability of the vacuum. By using this potential, a TE solution to Maxwell
equations is given by [2, 3]:

HR,I =
∇×∇×Πm

µ0
=

(
∂2ψR,I

∂r∂z
r̂ + r−1∂

2ψR,I

∂φ∂z
φ̂+

(
∂2ψR,I

∂z2
− c−2∂

2ψR,I

∂t2

)
ẑ

)
(3)

ER,I = − ∂

∂t
∇×Πm = µ0

(
−r−1∂

2ψR,I

∂φ∂t
r̂ +

∂2ψR,I

∂r∂t
φ̂

)
(4)

where ER, HR and HI , EI of Equations (3) and (4) are real solutions to Maxwell equations. A TM
mode can be obtained by exchanging the electric and magnetic fields.

Brittingham [4–6] proposed a function (ψB) that satisfies the vacuum wave Equation 1 whose
solutions to Maxwell equations are spatially localized electromagnetic pulses that propagate at the
speed of light:

ψB = f0B exp(−γs+ imφ)rm(iτ + q1)
−m−1 (5)
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where s = r2

iτ+q1
− i(ct + z), τ = z − ct, (r, φ, z) are the cylindrical coordinates; f0B is a normalizing

constant; m is the azimuthal index (or topological charge); and finally, γ, α, and q1 are positive
parameters.

The solutions to Maxwell equations obtained by introducing Equation (5) into Equations (2)–(4)
are termed a focus wave mode (FWM) for its alleged soliton-like properties and are continuous for m
integer values. They also move in a straight line and do not disperse as they propagate [5]. However,
they have infinite energy [6, 2], so in order to generate solutions to the Maxwell equations with finite
energy, Ziolkowsky [2] proposed using the solution to the wave equation [2, 3]:

ψZ = f0Z exp(−γs)(s+ q2)
−α(iτ + q1)

−1 (6)

where f0Z and q2 are positive parameters. Ziolkowsky’s solution does not have topological charge.
The electromagnetic field obtained for α = 1 has been widely studied by many researchers including
Ziolkowsky [2] and Hellwarth-Nouchi [3]. In particular, Hellwarth and Nouchi [3] demonstrated that
(for α = 1 and γ = 0) the electromagnetic field obtained has finite energy, and pulses are one-cycle or
short if the imaginary part is taken and 11

2 or long if the real part is used. The singularities of these
single-cycle pulses have been recently analyzed in [7]. When α ≥ 1, it is possible to obtain the family
of solutions recently studied in [8] by Shen et al., which correspond to supertoroidal pulses that exhibit
skyrmionic behaviour in the magnetic field. Raybould et al. have demonstrated that the electromagnetic
toroidal pulses based on the Hellwarth and Nouchi solutions can be used to generate multiple Mie modes
over a wide frequency region when they interact with dielectric particles [9]. Zdagkas et al. [10] have
recently reported the generation of this kind of pulse by using nanostructured metasurfaces in the
optical and THz region of the spectrum. On the other hand, Lekner has analyzed these types of pulses
in depth [11–15] demonstrating, among many other properties, that the momentum of the pulses based
on the Ziolkowsky-Nouchi function is smaller than energy/c, and that total angular momentum is null.

In this article, we are interested in studying few-cycle solutions (γ = 0) with non-null total angular
momentum and finite energy. So, by comparing Equations (5) and (6) (with m = 0), it is easy to
observe that they are the same except for the factor (s + q2)

−α, so it could be possible to obtain few-
cycle solutions to Maxwell equations by using a modification (ψm) to the Brittingham solution including
a term (s+ q2)

−α. Thus, we are going to analyze the solution of the wave equation (1), ψm, including
the term (s+ q2)

−α for the cases in which α = m+ 1, m ≥ 0:

ψm = fm exp(imφ)rm(s+ q2)
−(m+1)(iτ + q1)

−m−1 (7)

This expression is a solution to wave Equation (1), which then gives rise to solutions of Maxwell
equations according to Equations (3) and (4). It can be observed that if m = 0 then Equation (7)
corresponds to the Hellwarth and Nouchi single cycle solutions and to the previously cited toroidal
pulses with skyrmionic magnetic fields [8]. Equation (7) represents a particular case of functions
with azimuthal dependence based on the Hillion solution described by Lekner [14, 15]. Lekner has
studied similar functions for different cases like the superposition of TE and TM dephased pulses or
pseudo circularly polarized pulses with azimuthal dependence, analyzing the different properties of
the electromagnetic field. Moreover, Ornigotti et al. have also analyzed the effect of orbital angular
momentum on nondiffracting ultrashort optical pulses obtained by generalizing the X-wave solution of
the Maxwell equations [16].

Thus, we are going to analyze the electromagnetic properties and skyrmionic texture for different
azimuthal parametersm ≥ 1 of the solutions to Maxwell equations obtained by introducing Equation (7)
into Equations (3)–(4).

2. ELECTROMAGNETIC PROPERTIES OF THE FIELDS

For a given real electromagnetic field E, H the energy u, Poynting vector s, momentum p, and angular
momentum j densities are given respectively by:

u =
1

2
ϵ0|E|2 + 1

2
µ0|H|2, s = E×H, p =

s

c2
, j = r× p (8)
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U being the total energy, J angular momentum and P the momentum given by the volume integrals:

U =

∫
u d3r, P =

∫
pd3r, J =

∫
jd3r (9)

Figure 1 shows the energy density of the electromagnetic field at the focal region (at time t = 0) for the
values of m = 0, 1, 2, and 3. As can be seen, m = 0 corresponds to the toroidal pulse [3, 8]. The energy
distribution becomes more complex as the m parameter increases. As can be observed at time t = 0,
only the fields m = 0 and m = 1 present energy density at the z-axis (pulse propagation direction),
which in the case of m = 0 is purely magnetic.

Figure 1. Isosurfaces for the energy density of the electromagnetic field at the focal region (t = 0) for
the values of m = 0 (orange), m = 1 (red), m = 3 (green) and m = 4 (magenta). Pulse parameter:
q1 = 20q2. Black vector represents the z-axis (propagation direction).

Figure 2 shows the energy densities at the focal plane z = 0 for the time t = 0 choosing different
values of the topological charge m. As can be observed, only modes for m ≥ 2 show vortex at origin.
These energy densities show the same spatial distribution as the electric field lines described in [6].

The electromagnetic energy density shown in Figure 2, for topological charge m ≥ 2, bears a
resemblance to petal-like beamsthat which can be obtained when two modes with angular momentum
and opposite helicity are added coherently [17, 18].

It has been recently demonstrated that the Poynting vector vanishes along the propagation axis
(r = 0) by using the electromagnetic field associated to ψ0 [7, 8]. This property is satisfied for all
electromagnetic fields obtained by using the functions ψm if m ≥ 0 except when m = 1, in this case:

s1(0, z, t) =
4cµ0f

2
1 (−q21 + q22 + 4ctz)

(q21 + (−ct+ z)2)3(q22 + (ct+ z)2)3
ẑ (10)

This result is valid for both real and imaginary electromagnetic fields given in Equations (3) and (4).
Assuming q1 ̸= q2, it can be observed that s1 ̸= 0 if the pulse is at focus at t = 0, and for all time t and
position z if z t ̸= (q21 − q22)/(4c). So, from the electromagnetic pulses obtained by using the functions
ψm, the only one that carries axial power is the one with topological charge 1.

If the electromagnetic field is obtained by using the functions ψm according to Equations (3) and
(4), the magnitudes Um, Pm, and Jm are time invariant [15], so they can be obtained for t = 0 without
any loss of generality. By introducing Equation (7) into Equations (3), (4), and (8), evaluating them at
t = 0, and performing the integrals 9, we obtain that energy, momentum, and angular momentum for
modes m ≥ 0 are:

Um =
(m+ 2)(m+ 1)2

22m+3

π2f2mµ0

qm+3
1 qm+3

2

(q1 + q2) (11)

Pm =
(m+ 2)(m+ 1)2

22m+3

π2f2mµ0

c qm+3
1 qm+3

2

(q2 − q1)ẑ (12)

Jm = −m(m+ 1)2

22m+2

π2f2mµ0

c qm+2
1 qm+2

2

ẑ (13)
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Figure 2. Electromagnetic energy density on focal plane z = 0 for the time t = 0 for the values of m =
0, 1, 2, 3, 4 and 5. Dimensions of graphics are q22/4.

Equations (11)–(13) are valid for real and imaginary fields ER,I , HR,I . Equation (11) generalizes the
result obtained by Hellwarth and Nouchi [3] for m = 0 and demonstrates that the pulses obtained by
using Brittingham’s modified solution given by Equation (7) has finite energy. Momentum and angular
momentum given by Equations (12) and (13) are finite too, and only present axial components with
the angular momentum are directed against the propagation direction of the pulse. It can be deduced
from Equation (12) that if q2 = q1, the pulse momentum is null because the forward and backward
propagation terms in Equation (7) have equal weight. Moreover if q2 > q1, then the pulse propagates in
the positive z direction, and the momentum is heading in that direction. It is interesting to note that
according to Equations (11)–(13), all fundamental modes fulfill the conditions:

c
Pm,z

Um
= β = (q2 − q1)/(q1 + q2) < 1, ∀m (14)

c
Jm,z

Um
= − 2m

m+ 2

q1q2
q1 + q2

, ∀m (15)

Again, Equations (14) and (15) are valid for real and imaginary solutions. The result given by
Equation 14 is independent of m, and it is the same as the one obtained by Lekner [11, 15] for single-
cycle pulses with m = 0 and shows that the net momentum of the electromagnetic field is lower than

its energy /c. According to Lekner, c2
Pm,z

Um
= βc can be interpreted as an average of energy velocity,

and taking into account that β < 1, there exists a Lorentz transformation to a frame L0 in which the
total momentum is zero [11, 15] for any topological charge m.

On the other hand, Equation (15) establishes that the fundamental mode for m = 0 does not have
angular momentum in the pulse propagation direction. For m ≥ 1, the angular momentum Jm,z is
negative, and it is directed against the propagation direction of the pulse, which implies that the TE
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analyzed pulses are noncausal [15], meaning that they contain backward-propagating elements. It can
also be deduced from Equation (15) that the ratio of angular momentum to energy is bounded, and
it has a minimum negative value of 2q1q2/(c(q1 + q2)) obtained for large values of m. This result is
related to the fundamental limit described by Ornigotti [16], to the amount of angular momentum that
a single cycle optical pulse can carry, which is quite different from the one obtained, for example, with

monochromatic Laguerre-Gaussian (paraxial or non paraxial) beams [19] for which
J̃m,z

Ũm
= m/ω, and

it is not bounded. However, in this case it is important to note that J̃m,z and Ũm refer to angular
momentum and energy per unit of length, and are integrated over a surface at a fixed plane and not
over a volume according to:

J̃m,z

Ũm

=

∫∫
rdrdφjz

c

∫∫
rdrdφu

(16)

We have carried out integral (16) by introducing Equation (7) into Equations (3), (4), and (8), evaluating
them at plane z = 0 and t = 0, with the result being:

J̃m,z

Ũm

= −
(q1 + q2)

(
2m2q1q2 + 5mq1q2

)
c(m+ 2)

(
mq21 + 2mq1q2 +mq22 + 3q21 + 4q1q2 + 3q22

) (17)

This result is valid for real and imaginary fields, and it can be deduced from Equation (17) that
J̃m,z

Ũm
is

bounded, being the minimum value obtained for large values of m: −2q1q2/(c(q1 + q2)), a value that is
equal to the one obtained when volumetric integrals are used.

Recently, Porras [20] has demonstrated that the azimuthal index (topological chargem) is bounded,
and consequently the angular orbital momentum carried by pulses obtained by a superposition of
Laguerre-Gaussian beams is bounded too. It is important to note that in our case the azimuthal
number m is not bounded, but it is deduced from Equation (15) that for a finite and fixed energy Um

the angular momentum |Jm,z| = 2m
m+2

q1q2
q1+q2

Um
c is bounded for large values of m to 2 q1q2

q1+q2
Um
c . In the next

subsection, we are going to study the reason that the ratio of angular momentum to energy is bounded.

2.1. Energy Spectra and Mean Frequency of the Pulse

Applying the same methodology as Nouchi et al. [3] in Section 4 of their paper, we focus on real fields
although the results are identical to those of imaginary ones. Thus, the spectrum Vω,R is defined as [3]:

Um =
1

2π

∫ ∞

0
Vω,Rdω (18)

In order to obtain Vω,R, we use the relation [3]:

Vω,R = 2ϵ0c

∫ π

0
|Fω(R, θ)|2R2 sin(θ)dθ (19)

where the integral is carried out over the surface of a sphere in the far field of the outward traveling
pulse. |Fω(R, θ)| is obtained from the Fourier transform:

Fω(R, θ) =

∫ ∞

−∞
exp(iωt)ẼRdt (20)

ẼR represents the far field approximation of the electric field given in Equation (4) obtained as the limit

at large radius R [3] (note that we use the spherical coordinates (R =
√
r2 + z2, θ = arctan(r/z), φ) to

obtain this limit). Equation (19) can be used to obtain the mean frequency of the pulse given by:

ω =

∫ ∞

0
Vωωdω∫ ∞

0
Vωdω

(21)
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Using the far field approximation (ψa) for ψm [3], we obtain:

ψm → ψa =
(−1)m+1fm sin(θ)m exp(imφ)

R 2m+1

1

(ct−R+ iQ)m+1
(22)

where Q = 1
2(−(q2 − q1) cos(θ) + q1 + q2), and introducing Equation (22) into (4) (using only the

azimuthal component of the field, because the contribution in the far field is higher than that of the
radial component due to the factor r−1 = R−1 sin−1(θ), as can be observed in Equation (4)), we find
that the azimuthal component of the real electric field is given by:

ẼR =
1

2

∂2(ψa + ψ∗
a)

∂t∂r
φ̂ (23)

Introducing Equation (23) into Equation (20), we obtain that:

Fω(R, θ) = −iω ∂

∂r

∫ ∞

−∞

(ψa + ψ∗
a)

2
exp(iωt)dt. (24)

So performing the integral and taking the solution for ω > 0, we obtain:

|Fω(R, θ)|2 =
π2f2m µ

2
0

(ω
c

)2(m+2)
exp

(
−2Qω

c

)
sin(θ)2(m+1)

R2(m!)222m+2
(25)

Introducing (25) into (19) and using the software Mathematica [21] to perform the integral in
Equation 19, we obtain that:

Vω,R = 2

f2mπ
7/2(m+ 1)µ0ω

4
(ω
c

)2m
exp

(
−ω(q1 + q2)

c

)
0

F̃1

(
;m+

5

2
;
(q1 − q2)

2ω2

4c2

)
4m c5m!

(26)

with 0F̃1 being the hypergeometric regularized function. This expression in 18 reproduces the result for
the total pulse energy given in Equation (11) for any value of topological charge m. The mean frequency
of the pulse can be determined by introducing Equation (26) into Equation (21):

ω =
1

2
c

(
m+ 3

q1
+
m+ 3

q2
− 2

q1 + q2

)
(27)

It is important to note that the mean frequency given by Equation (27) depends on the parameters
q1 and q2 of the pulse and the topological charge m. It can be deduced from Equation (27) that
the mean frequency increases with m as it rises, being a special characteristic of this kind of pulses.
This result implies that pulse duration T = 2π/ω decreases if the imprinted topological charge increases.
Ornigotti et al. [16] have found (using a different method) that the carrier frequency is also proportional
to m+2 for other few-cycle pulses with topological charge m, which are also exact solutions to Maxwell
equations. Although there are no sustained oscillations in the pulses derived from (7) [11], we can use
the effective frequency ω in order to calculate the conventional expression [19] applied to pulses for

which
c Jm,z

Um
= m/ω obtaining that:

c Jm,z

Um
=
m

ω
=

2m

c

(
m+ 3

q1
+
m+ 3

q2
− 2

q1 + q2

) , and: lim
m→∞

c Jm,z

Um
=

2q1q2
(q1 + q2)

(28)

which coincides with the bounded value previously obtained for
Jm,z

Um
, and consequently, demonstrating

that the angular momentum of the pulses is bounded. The main factor for obtaining this result is the
dependence of ω on the topological charge m.

Another important magnitude is the variance of the pulse spectrum given by:

σ2 =

∫ ∞

0
Vω(ω − ω)2dω∫ ∞

0
Vωdω

=
1

4
c2

(
m+ 3

q21
+
m+ 3

q22
− 4

(q1 + q2)2

)
(29)
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Porras [20] recently demonstrated that m < ω2/σ2, which implies that the angular momentum of pulses
obtained by a superposition of Laguerre-Gaussian beams is bounded, as we mentioned previously. Using
Equations (29) and (27) and taking into account that q1 > 0, q2 > 0 and m ≥ 0 we obtain that:

ω2

σ2
=

(
(m+ 3)q21 + 2(m+ 2)q1q2 + (m+ 3)q2

)2
(m+ 3)q41 + 2(m+ 3)q31q2 + 2(m+ 1)q21q

2
2 + 2(m+ 3)q1q32 + (m+ 3)q42

> m (30)

Therefore, this result proves that the inequality demonstrated by Porras [20] holds for the pulses
analyzed too. However, the inequality of Equation (30), unlike what happens for the Laguerre-Gaussian
beams analyzed by Porras, does not imply restriction in the values of topological charge although the
angular momentum is bounded, as we have demonstrated.

3. SKYRMIONIC TEXTURE OF ELECTRIC, MAGNETIC, MOMENTUM AND
ANGULAR MOMENTUM FIELDS

It has been previously mentioned that Shen et al. [8] recently demonstrated that the magnetic field
associated with the Ziolkowsky solution (6) with γ = 0 and α ≥ 1 shows skyrmionic behaviour in the
magnetic field at different planes. Skyrmion is a topologically protected quasiparticle with a hedgehog-
like vectorial field, whose orientation gradually changes as one moves away from the skyrmion center [8].
Different electromagnetic skyrmions have been reported recently. For example, skyrmions lattices can be
generated using evanescent electromagnetic fields [22], or electromagnetic skyrmions based on magnetic
localized spoof plasmons (LSPs) sustained by a wisely designed space-coiling meta-structure have been
described by Deng et al. [23].

We are going to analyze the skyrmionic texture of electric and magnetic fields obtained by using
ψm, when the pulse is focused at time t = 0 on the plane z = 0. In order to do so, it is necessary to
introduce the skyrmionic number [24, 8, 25]:

Nsk =
1

4π

∫∫
n ·

(
∂n

∂x
× ∂n

∂y

)
dxdy =

1

4π

∫∫
n ·

(
∂n

∂r
× ∂n

∂φ

)
drdφ (31)

In Equation (31), n is a unitary vector defined in Cartesian coordinates. Taking into account that our
fields are expressed in cylindrical coordinates, it is convenient to rewrite Nsk for a unitary vector nc in
cylindrical coordinates. Let nc = nr(r, φ, z, t)r̂+ nφ(r, φ, z, t)φ̂+ nz(r, φ, z, t)ẑ be a unitary vector field
in cylindrical coordinates, which can be expressed in Cartesian coordinates (for simplicity, we do not
introduce the functional dependencies of the vector field components) as:

n = (nr cos(φ)− nφ sin(φ))x̂+ (nr sin(φ) + nφ cos(φ))ŷ + nz ẑ (32)

so introducing Equation (32) into (31) and taking into account that:

|n|2 = |nc|2 = 1 = n2r + n2φ + n2z (33)

∂|n|2

∂r
= 0, then if nφ ̸= 0 =⇒ ∂nφ

∂r
= −n−1

φ

(
nr
∂nr
∂r

+ nz
∂nz
∂r

)
(34)

the skyrmion number can be written as:

Nsk =
1

4π

∫ 2π

0
dφ

∫ ∞

0

(
−∂nz
∂r

+Nc(r, φ)

)
dr (35)

where Nc(r, φ) = nc · (∂nc
∂r × ∂nc

∂φ ).

We are going to focus on the real part solutions to Maxwell equations, which can be obtained
on plane z = 0 and time t = 0 by introducing Equation (7) into Equations (3) and (4), being the
corresponding expressions of the real electrical and magnetic fields:

ER = em(r) (m cos(mφ)r̂ − Fm(r) sin(mφ)φ̂) (36)

HR = hm(r) (−Fm(r)∆q sin(mφ)r̂ −m∆q cos(mφ)φ̂+Gm(r) cos(mφ)ẑ) (37)

where em(r) =
µ0 c fm(m+1)rmδq

r(q12+r2)m+2 , hm(r) = fm(m+1)rm

r(q12+r2)m+2 , δq = q1 + q2, ∆q = q1 − q2, q12 = q1q2,

Fm(r) = mq12−4r2−mr2

q12+r2
and Gm(r) = 4r((m+1)q12−r2)

q12+r2
.
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3.1. Electric Field ER

Due to the symmetry of Equation (36), the electric field does not show skyrmionic texture on
the plane z = 0. To prove it, let nc = ER/|ER|: it can be deduced from Equation (36) that
nc does not have an axial component; thus ∂nz/∂r = 0, and, on the other hand, ∂nc/∂r =
± cos(mφ) sin(mφ)F ′

m(r)/(mFm(r))∂nc/∂φ, so ∂nc/∂r×∂nc/∂φ = 0 because both vectors are parallels,
so the skyrmionic number Nsk = 0. It is therefore demonstrated that the electric field does not have
skyrmionic texture at the time and on the plane analyzed.

3.2. Magnetic Field HR

According to Equation (37), if m = 0, the magnetic field has only an axial component, so n = nc =
HR/|HR| = nz. Then by Equation (31), (∂n∂r × ∂n

∂φ) = 0, and we obtain that Nsk = 0.

If m ̸= 0, it can be deduced from Equation (37) that:∫ 2π

0
Nc(r, φ)dφ =

∫ 2π

0

∆2
qm

2Fm(r)G′
m(r) cos(mφ)dφ(

∆2
qFm(r)2 sin2(mφ) + cos2(mφ)

(
Gm(r)2 +∆2

qm
2
))3/2 = 0 (38)

for nc = HR/|HR|, the only contribution to the skyrmionic number can be due to the axial term of the
unitary vector nc = nz(r, φ). According to Equation (35) and taking into account the integral (38), we
obtain that:

Nsk =
1

4π

∫ 2π

0
(nz(∞, φ)− nz(0, φ))dφ (39)

being:
nz(∞, φ) = lim

r→∞
nz(r, φ) (40)

The axial component nz can be obtained by introducing the Equation (37) into the definition
nc = HR/|HR|, so:

nz =
Gm(r) cos(mφ)√

∆q2Fm(r)2 sin2(mφ) +Gm(r)2 cos2(mφ) + ∆q2m2 cos2(mφ)
(41)

Taking into account that Gm(0) = 0, we obtain that nz(0, φ) = 0, and then there is no contribution
to Nsk from the term nz(0, φ). Introducing the functions F (r) and G(r) into Equation (41), we obtain
that:

nz(∞, φ) = −sign(cos(mφ)), ∀m ≥ 1 (42)

Integrating the last equations according to Equation (39), it is obtained that the skyrmionic number
Nsk = 0, ∀m, so the magnetic field does not have skyrmionic texture at the focal plane for any value of
topological charge, although it has been shown by Shen et al. [8] that the magnetic field obtained with
m = 0 shows skyrmionic textures at other planes z ̸= 0.

It is interesting to note that it is possible to obtain a skyrmionic number greater than 1 [26, 27] on
the plane z = 0 by the superposition of two magnetic fields like the one given in Equation (37) with two
different azimuthal numbers that individually have a null skyrmionic number as we have demonstrated.
Let H0n be the magnetic field obtained by a superposition of pulses with topological charge 0 and n
(n > 0):

H0n = HR|m=0 +HR|m=n (43)

For this magnetic field, it is not possible to obtain analytical expressions for the skyrmionic number
given by Equation (31), but the integrals must be carried out numerically. If we assume, for example,
that q2 = 20q1, f0 = 25, fn = 1 and perform integral 31, for n ≥ 1 we obtain that the skyrmionic
number is given by Nsk = n+ 1.

Figure 3 shows the magnetic field on the plane z = 0 and time t = 0 for (a) HR|m=2, without
skyrmionic texture and (b) H02 which shows skyrmionic number Nsk = 3. Figures 3(c) and (d) show the
topological density (which is the integrand in Cartesian coordinates of Equation (31) associated with the
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(a) (b)

(c) (d)

Figure 3. Magnetic fields on the plane z = 0 and t = 0 (a) HR|m=2 without skyrmionic texture and
(b) H02 that shows skyrmionic number Nsk = 3, the total surface is q22/4. (c) Topological density
associated to field (a), (d) topological density associated to the field (b). The total surface is 4q22.

magnetic fields of Figures 3(a) and (b), respectively. As can be seen, the topological density associated
with HR|m=2 is highly symmetrical showing positive and negative values, which are integrated to give
rise to a null skyrmionic number. On the other hand, when we superpose to HR|m=0 the magnetic field
HR|m=2, the topological density changes drastically, as can be observed in Figure 3(d), being highly
symmetric too but positive defined, and after integration, a skyrmionic number Nsk = 3 is obtained.

4. CONCLUSION

We have analyzed the electromagnetic properties of a family of few-cycle pulses based on a modification
to Brittingham’s Focus Wave Mode (FWM) that are exact solution to Maxwell equations, showing that
they have finite energy, momentum, and angular momentum. We have also demonstrated that, for these
solutions, the mean frequency depends on the topological charge which implies that the momentum
energy ratio is bounded. Finally, we have shown that it is possible to obtain a skyrmionic number
greater than the one for the magnetic field by superposing a pulse without topological charge with
another with topological charge that is non null. In order to obtain these results we have focused on
TE electromagnetic pulses, but TM polarized pulses would create the same skyrmionic textures for the
electric field.
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