Vol. 106
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-09-09
A Novel CSRR Loaded Compact ACS Fed Monopole Antenna for Sub-6 GHz 5G Applications
By
Progress In Electromagnetics Research Letters, Vol. 106, 89-95, 2022
Abstract
The design of a Complementary Split Ring Resonator (CSRR) embedded compact Asymmetric Coplanar Strip (ACS) fed monopole antenna is presented in this paper. By incorporating the ACS feed, a substantial reduction of 27% in antenna dimensions is achieved. Further miniaturization of 68.6% is obtained by embedding CSRR on the designed patch and a trapezoidal ground. The overall size of the antenna is 13.2 × 27 × 1.6 mm3, and it is printed on an FR4-epoxy substrate. The antenna operates with a resonant frequency of 3.6 GHz and a bandwidth of 3.3 GHz (3.2-6.5 GHz). Thus it is appropriate for sub-6 GHz 5G applications. It exhibits a return loss of -28 dB and a gain of 2.8 dBi at the resonant frequency. The antenna is fabricated, and the measured results match well with the simulated ones. Being a simple, cheap, and uniplanar structure, the proposed antenna can meet the requirements of a modern wireless communication system.
Citation
Mekala Ananda Reddy, Albert Ruth Jency, Sharma Shabdita, and Ramasamy Pandeeswari, "A Novel CSRR Loaded Compact ACS Fed Monopole Antenna for Sub-6 GHz 5G Applications," Progress In Electromagnetics Research Letters, Vol. 106, 89-95, 2022.
doi:10.2528/PIERL22070501
References

1. Ali, T., M. M. Khaleeq, S. Pathan, and R. C. Biradar, "A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 60, No. 1, 0895-2477, 2018.
doi:10.1002/mop.30921

2. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/PIERC18012905

3. Varamini, G., A. Keshtkar, and M. N. Moghadasi, "Miniaturization of microstrip loop antenna for wireless applications based on metamaterial metasurface," International Journal of Electronics and Communications, Vol. 83, 1434-8411, 2018.

4. Vallappil, A. K., B. A. Khawaja, M. K. A. Rahim, M. N. Iqbal, and H. T. Chattha, "Metamaterial-inspired electrically compact triangular antennas loaded with CSRR and 3 × 3 cross-slots for 5G indoor distributed antenna systems," Micromachines (Basel), 2022.

5. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 0895-2477, 2015.
doi:10.1002/mop.28835

6. Gupta, N., J. Saxena, K. S. Bhatia, and N. Dawadal, "Design of metamaterial-loaded rectangular patch antenna for satellite communication applications," Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Vol. 43, No. 1, 2364-1827, 2018.

7. Pandeeswari, R., "Complimentary split ring resonator inspired meandered CPW-fed monopole antenna for multiband operation," Progress In Electromagnetics Research C, Vol. 80, 13-20, 2018.
doi:10.2528/PIERC17101402

8. Rammyaa, B. and K. S. Vishvaksenan, "CPW fed metamaterial loaded dual-band roof-top antenna for vehicular communications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 8, 1096-4290, 2021.
doi:10.1002/mmce.22740

9. Abbas, A. K. and S. Thangavelu, "Compact ACS-fed monopole antenna with CRR defect for triple band application," International Journal of Electronics and Communications, Vol. 127, 1434-8411, 2020.

10. Pillai, P. N. and R. Pandeeswari, "A compact uniplanar ACS-fed metamaterial inspired dual band antenna for S-band and C-band applications," Applied Physics A, Vol. 128, No. 4, 1432-0630, 2022.
doi:10.1007/s00339-022-05410-6

11. Vummadisetty, P. N. and A. Kumar, "Multi feed multi band uniplanar ACS fed antenna with N shape and inverted L shape radiating branches for wireless applications," Microsystem Technologies, Vol. 24, No. 4, 1432-1858, 2018.
doi:10.1007/s00542-017-3565-8

12. Saurabh, A. K. and M. K. Meshram, "Compact sub-6 GHz 5G-multiple-input-multiple-output antenna system with enhanced isolation," International Journal of RF and Microwave Computer --- Aided Engineering, Vol. 30, No. 8, 2020.
doi:10.1002/mmce.22246

13. Rajalakshmi, P. and N. Gunavathi, "Hexagonal split ring resonator enclosed circular split ring resonator inspired dual-band antenna for sub-6 GHz 5G NR and IEEE 802.11ba/be applications," Progress In Electromagnetics Research C, Vol. 115, 1-15, 2021.
doi:10.2528/PIERC21070504

14. Azim, R., A. M. H. Meaze, A. Affandi, M. M. Alam, R. Aktar, M. S. Mia, T. Alam, M. Samsuzzaman, and M. T. Islam, "A multi-slotted antenna for LTE/5G sub-6 GHz wireless communication applications," International Journal of Microwave and Wireless Technologies, Vol. 13, No. 5, 486-496, 2020.
doi:10.1017/S1759078720001336

15. Desai, A., R. Patel, T. Upadhyaya, H. Kaushal, and V. Dhasarathan, "Multiband inverted E and U shaped compact antenna for digital broadcasting, wireless, and sub 6 GHz 5G applications," International Journal of Electronics and Communications, Vol. 123, 1434-8411, 2020.