Vol. 174
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-06-09
Deep Insight into Channel Engineering of Sub-3 nm -Node P-Type Nanosheet Transistors with a Quantum Transport Model
By
Progress In Electromagnetics Research, Vol. 174, 75-88, 2022
Abstract
Based on a self-consistent Schrodinger-Poisson solver and top-of-the-barrier model, a quantum transport simulator of p-type gate-all-around nanosheet FET is developed. The effects of material (Si/Ge), stress, crystallographic orientation, and cross-sectional size are deeply explored by numerical simulations for the device performance at the sub-3 nm technology node. A strain-dependent 6-band k.p Hamiltonian is incorporated into the model for a more accurate calculation of E-k dispersion in the strain-perturbed valence band structure, where the curvature, energy shift, and splitting of subbands are investigated in detail for hole transport properties. Further, the effect of channel engineering is comprehensively analyzed, by evaluating density-of-states effective mass, average injection velocity, mobility, current density distributions, and the current-voltage characteristics. An effective performance improvement from 2GPa compressive stress is obtained in [100]/(001) and [110]/(001) channels, with a 7% enhancement of ON-current in Ge nanosheet FETs. While a wider channel cross-section improves the drive current by increasing the effective channel width, a smaller cross-sectional width yields an average increase up to 29% in the ON-state injection velocity due to stronger quantum confinement.
Citation
Afshan Khaliq, Shuo Zhang, Jun Z. Huang, Kai Kang, and Wen-Yan Yin, "Deep Insight into Channel Engineering of Sub-3 nm -Node P-Type Nanosheet Transistors with a Quantum Transport Model," Progress In Electromagnetics Research, Vol. 174, 75-88, 2022.
doi:10.2528/PIER22041202
References

1. Loubet, N., T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, and M. Guillorn, "Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET," Proceedings Symposium VLSI Technology, Vol. 5, No. 1, 14-15, 2017, doi: 10.23919/VLSIT.2017.7998183.

2. Jang, D., et al. "Device exploration of nanosheet transistors for sub-7-nm technology node," IEEE Transactions on Electron Devices, Vol. 64, No. 4, 2707-2713, 2017, doi: 10.1109/TED.2017.2695455.
doi:10.1109/TED.2017.2695455

3. Nagy, D., G. Indalecio, A. J. Garcia-Loureiro, M. A. Elmessary, K. Kalna, and N. Seoane, "FinFET versus gate-all-around nanowire FET: Performance, scaling, and variability," IEEE Journal of Electron Devices Society, Vol. 6, No. 1, 332-340, 2018, doi: 10.1109/JEDS.2018.2804383.
doi:10.1109/JEDS.2018.2804383

4. Zhang, S., et al. "Design considerations for Si- and Ge-stacked nanosheet pMOSFETs based on quantum transport simulations," IEEE Transactions on Electron Devices, Vol. 67, No. 1, 26-32, 2020, doi: 10.1109/TED.2019.2954308.
doi:10.1109/TED.2019.2954308

5. Sun, Y., S. E. Thompson, and T. Nishida, "Physics of strain effects in semiconductors and metal- oxide-semiconductor field-effect transistors," Journal of Applied Physics, Vol. 101, No. 10, 2007, doi: 10.1063/1.2730561.
doi:10.1063/1.2730561

6. Yao, J., et al. "Physical insights on quantum confinement and carrier mobility in Si, Si0.45Ge0.55, Ge gate-all-around NSFET for 5 nm technology node," IEEE Journal of Electron Devices Society, Vol. 6, 841-848, 2018, doi: 10.1109/JEDS.2018.2858225.
doi:10.1109/JEDS.2018.2858225

7. Teherani, J. T., "A comprehensive theoretical analysis of hole ballistic velocity in Si, SiGe, and Ge: Effect of uniaxial strain, crystallographic orientation, body thickness, and gate architecture," IEEE Transactions on Electron Devices, Vol. 64, No. 8, 3316-3323, 2017, doi: 10.1109/TED.2017.2708691.
doi:10.1109/TED.2017.2708691

8. Mohapatra, E., T. P. Dash, J. Jena, S. Das, and C. K. Maiti, "Strain induced variability study in gate-all-around vertically-stacked horizontal nanosheet transistors," Physica Scripta, Vol. 95, No. 6, 2020, doi: 10.1088/1402-4896/ab89f5.
doi:10.1088/1402-4896/ab89f5

9. Khakifirooz, A. and D. A. Antoniadis, "Transistor performance scaling: The role of virtual source velocity and its mobility dependence," IEEE International Electron Devices Meeting, 1-4, 2006, doi: 10.1109/IEDM.2006.346873.

10. Dash, T. P., S. Dey, S. Das, E. Mohapatra, J. Jena, and C. K. Maiti, "Strain-engineering in nanowire field-effect transistors at 3 nm technology node," Physica E Low-Dimensional System and Nanostructures, Vol. 118, 113964, 2020, doi: 10.1016/j.physe.2020.113964.
doi:10.1016/j.physe.2020.113964

11. Maegawa, T., T. Yamauchi, T. Hara, H. Tsuchiya, and M. Ogawa, "Strain effects on electronic bandstructures in nanoscaled silicon: From bulk to nanowire," IEEE Transactions on Electron Devices, Vol. 56, No. 4, 553-559, 2009, doi: 10.1109/TED.2009.2014185.
doi:10.1109/TED.2009.2014185

12. Zhang, J.-H., Q.-A. Huang, H. Yu, and S.-Y. Lei, "Orientation effects in ballistic high-strained p-type Si nanowire FETs," Sensors, Vol. 9, No. 4, 2746-2759, 2009, doi: 10.3390/s90402746.
doi:10.3390/s90402746

13. Thompson, S. E., G. Sun, K. Wu, J. Lim, and T. Nishida, "Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs," IEEE International Electron Devices Meeting, 221-224, 2005, doi: 101109/IEDM.2004.1419114.

14. Sun, Y., X. Yu, R. Zhang, B. Chen, and R. Cheng, "The past and future of multi-gate field-effect transistors: Process challenges and reliability issues," Journal of Semiconductor, Vol. 42, No. 2, 2021, doi: 10.1088/1674-4926/42/2/0231102.
doi:10.1088/1674-4926/42/2/023102

15. Stanojevic, Z., V. Sverdlov, O. Baumgartner, and H. Kosina, "Subband engineering in n-type silicon nanowires using strain and confinement," Solid State Electronics, Vol. 70, 73-80, 2012, doi: 10.1016/j.sse.2011.11.022.
doi:10.1016/j.sse.2011.11.022

16. Zhang, L., J. He, J. Zhang, F. Liu, Y. Fu, Y. Song, and X. Zhang, "An analytic model for Ge/Si core/shell nanowire MOSFETs considering drift-diffusion and ballistic transport," 10th Int'l Symposium on Quality Electronic Design, 2009, doi: 10.1109/ISQED.2009.4810359.

17. Xu, X. and J. Mahanty, "The influence of Si delta doping on the electronic structure of AlGaAs- GaAs-AlGaAs single quantum wells," Journal of Physics: Condense Matter, Vol. 6, No. 25, 4745-4762, 1994.
doi:10.1088/0953-8984/6/25/013

18. Moussavou, M., N. Cavassilas, E. Dib, and M. Bescond, "Influence of uniaxial strain in Si and Ge p-type double-gate metal-oxide-semiconductor field effect transistors," Journal of Applied Physics, Vol. 118, No. 11, 2015, doi: 10.1063/1.4930567.
doi:10.1063/1.4930567

19. Huang, J. Z., L. Zhang, P. Long, M. Povolotskyi, and G. Klimeck, "Quantum transport simulation of III-V TFETs with reduced-order kp method," Tunneling Field Effect Transistor Technology, 151-180, 2016, doi: 10.1007/978-3-319-31653-6_6.

20. Ma, Z.-H., W. C. Chew, and L. J. Jiang, "A novel fast solver for Poisson's equation with Neumann boundary condition," Progress In Electromagnetic Research, Vol. 136, 195-209, 2013.
doi:10.2528/PIER12112010

21. Neophytou, N., A. Paul, and G. Klimeck, "Bandstructure effects in silicon nanowire hole transport," IEEE Transactions Nanotechnology, Vol. 55, No. 6, 1286-1297, 2008, doi: 10.1109/TNANO.2008.2006272.

22. "IEEE International Roadmap for Devices and Systems --- IEEE IRDS,", 2020.

23. Wang, J., A. Rahman, G. Klimeck, and M. Lundstrom, "Bandstructure and orientation effects in ballistic Si and Ge nanowire FETs," IEEE International Electron Devices Meeting, Vol. 2005, 530-533, 2005, doi:10.1109/IEDM.2005.1609399.

24. Anantram, M. P., M. S. Lundstrom, and D. E. Nikonov, "Modeling of nanoscale devices," Proceedings of the IEEE, Vol. 96, No. 9, 1509-1510, 2008, doi: 10.1109/JPROC.2008.927311.
doi:10.1109/JPROC.2008.927355

25. Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
doi:10.1017/CBO9781139164313

26. Lundstrom, M. S. and D. A. Antoniadis, "Compact models and the physics of nanoscale FETs," IEEE Transactions on Electron Devices, Vol. 61, No. 2, 225-233, 2014, doi: 10.1109/TED.2013.2283253.
doi:10.1109/TED.2013.2283253

27. Wang, R., Y. Zhang, G. H. Chen, and C. Y. Yam, "Quantum mechanical modeling of electron- photon interactions in nanoscale devices," Progress In Electromagnetic Research, Vol. 154, 163-170, 2015.
doi:10.2528/PIER15112903