Vol. 104
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-06-06
Toward the Development of an Efficient and Stability-Improved FDTD Method for Anisotropic Magnetized Plasma
By
Progress In Electromagnetics Research Letters, Vol. 104, 113-120, 2022
Abstract
An efficient and stability-improved finite-difference time-domain (FDTD) method with auxiliary difference equations (ADE) for cold magnetized plasma is developed in this paper. The two equations of Ampere's law and the auxiliary equation for plasma are unified as a single equation at first. Then the leapfrog difference scheme is applied to it and Faraday's law, respectively. By introducing a mid-term computation into the unified equation, the iterative equations of the ADE-FDTD for plasma are derived. Its stability condition remains the same as that of a vacuum which is analyzed and numerically verified. Numerical experiments show that our proposed method is more efficient than those provided by others but with the same accuracy. Finally, the transmission properties of a magnetized plasmonic slab are investigated. The reflection and transmission coefficients of the right-circularly-polarized (RCP) and left-circularly-polarized (LCP) waves are calculated. The results show that our proposed method can be applied to study these plasma-based structures accurately and efficiently.
Citation
Jian-Yun Gao, and Xiang-Hua Wang, "Toward the Development of an Efficient and Stability-Improved FDTD Method for Anisotropic Magnetized Plasma," Progress In Electromagnetics Research Letters, Vol. 104, 113-120, 2022.
doi:10.2528/PIERL22040201
References

1. Taflove, A. and S. C. Hagness, Computational Electromagnetics: Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

2. Teixeira, F. L., "Time-domain nite-difference and finite-element methods for Maxwell equations in complex media," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2150-2166, 2008.
doi:10.1109/TAP.2008.926767

3. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431

4. Xu, L. and N. Yuan, "FDTD formulations for scattering from 3-D anisotropic magnetized plasma objects," IEEE Antennas Wireless Propag. Lett., Vol. 5, 335-338, 2006.
doi:10.1109/LAWP.2006.878901

5. Zhang, J., H. Fu, and W. Scales, "FDTD analysis of propagation and absorption in nonuniform anisotropic magnetized plasma slab," IEEE Trans. Plasma Sci., Vol. 46, No. 6, 2146-2153, 2018.
doi:10.1109/TPS.2018.2830416

6. Young, J. L., A. Kittichartphayak, Y. M. Kwok, and D. Sullivan, "On the dispersion errors related to (FD)2TD type schemes," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1902-1909, 1995.
doi:10.1109/22.402280

7. Surkova, M., W. Tierens, I. Pavlenko, D. Van Eester, G. Van Oost, and D. De Zutter, "3-D discrete dispersion relation, numerical stability, and accuracy of the hybrid FDTD model for cold magnetized toroidal plasma," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6307-6316, 2014.
doi:10.1109/TAP.2014.2361902

8. Liu, S. B., J. J. Mo, and N. C. Yuan, "An auxiliary differential equation FDTD method for anisotropic magnetized plasma," Acta Physica Sinica, Vol. 53, No. 7, 2233-2236, 2004.
doi:10.7498/aps.53.2233

9. Samimi, A. and J. J. Simpson, "An efficient 3-D FDTD model of electromagnetic wave propagation in magnetized plasma," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 269-279, 2015.
doi:10.1109/TAP.2014.2366203

10. Pokhrel, S., V. Shankar, and J. J. Simpson, "3-D FDTD modeling of electromagnetic wave propagation in magnetized plasma requiring singular updates to the current density equation," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4772-4781, 2018.
doi:10.1109/TAP.2018.2847601

11. Yu, Y. and J. J. Simpson, "An E-J collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 469-478, 2010.
doi:10.1109/TAP.2009.2037770

12. Smith, G. D., Numerical Solution of Partial Differential Equations, Oxford Univ. Press, Oxford, U.K., 1978.

13. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS PML for arbitrary media," Microw. Opt. Tech. Lett., Vol. 50, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

14. Hu, W. and S. A. Cummer, "An FDTD model for low and high altitude lightning-generated EM fields," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1513-1522, 2006.
doi:10.1109/TAP.2006.874336

15. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media. I. Magnetized plasma," IEEE Trans. Antennas Propag., Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739

16. Balanis, C., Advanced Engineering Electromagnetics, Wiley, New York, 1989.