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Toward the Development of an Efficient and Stability-Improved
FDTD Method for Anisotropic Magnetized Plasma

Jian-Yun Gao1 and Xiang-Hua Wang2, *

Abstract—An efficient and stability-improved finite-difference time-domain (FDTD) method with
auxiliary difference equations (ADE) for cold magnetized plasma is developed in this paper. The
two equations of Ampere’s law and the auxiliary equation for plasma are unified as a single equation
at first. Then the leapfrog difference scheme is applied to it and Faraday’s law, respectively. By
introducing a mid-term computation into the unified equation, the iterative equations of the ADE-
FDTD for plasma are derived. Its stability condition remains the same as that of a vacuum which
is analyzed and numerically verified. Numerical experiments show that our proposed method is more
efficient than those provided by others but with the same accuracy. Finally, the transmission properties
of a magnetized plasmonic slab are investigated. The reflection and transmission coefficients of the
right-circularly-polarized (RCP) and left-circularly-polarized (LCP) waves are calculated. The results
show that our proposed method can be applied to study these plasma-based structures accurately and
efficiently.

1. INTRODUCTION

Based on directly discretizing Maxwell’s equations, the finite-difference time-domain (FDTD) method
is a powerful full-wave numerical method to simulate various materials, including plasma [1, 2]. As a
dispersive media, there are generally two approaches to incorporating the plasma into Maxwell’s curl
equations. One way is that: first, directly convert the relation of the electric flux density D with the
electric field intensity E from the frequency domain into the time domain; then, different types of time-
domain iterative equations are developed, such as the recursive convolution FDTD (RC-FDTD) [3] and
its extended piecewise-linear recursive convolution FDTD (PLRC-FDTD) [4]. The other approach is
that: first, introduce an auxiliary equation (AE) characterized by the polarization current density J or
the polarization intensity P to describe the effect of the plasma; then, a different type of discretizing
method is applied to the AE to obtain its iterative equations, such as the JE convolution FDTD (JEC-
FDTD) [5] and the auxiliary differential equation FDTD (ADE-FDTD) [6, 7]. Generally, the FDTD
methods obtained by the first approach are more complicated. Their stability conditions are also hard
to be analyzed. By directly discretizing the AE with a finite difference approximation, the ADE-FDTD
is a simple but effective method. Therefore, it has been extensively studied recently. The ADE-FDTD
methods related to J can be further divided into two categories with HJ- or EJ-collocated in the time
domain. In [8], one simple HJ-ADE-FDTD was proposed. However, we found that compared with that
for vacuum, the maximum timestep for plasma was reduced, i.e., its stability condition depends on the
parameters of plasma. To overcome this drawback, the HJ-ADE-FDTD method with two timesteps was
developed in [9]. It was further extended in [10]. However, they are more complicated than that in [8].
In addition, the EJ-ADE-FDTD method was proposed in [11]. Its stability condition is not related
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to the plasma’s parameters. However, its iterative equations are complicated and inefficient for real
applications. Therefore, it is necessary to develop one FDTD method with simple iterative equations
and the stability condition not depending on the plasma’s parameters.

In this paper, based on the methods provided in [8] and [11], we develop a new ADE-FDTD which
is more efficient than those in [8] and [11] but keeps the stability condition being free of the plasma’s
parameters as that in [11].

2. METHODOLOGY

Maxwell’s curl equations and the coupled polarization current density equations for anisotropic
magnetized cold plasma can be written as:

∂H

∂t
= − 1

µ0
∇×E (1a)

∂E

∂t
=

1

ε0
(∇×H− J) (1b)

dJ

dt
= ε0ω

2
pE− νJ+ ωc × J (1c)

where ν is the electron collision frequency, ωp the plasma frequency, and ωc the plasma gyrofrequency
with ωc = ωcxi + ωcyj + ωczk; here i, j, and k are the unit vectors along the x, y, and z-directions,
respectively. To obtain a more unified form equation, (1b) and (1c) can be rewritten as:
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Further, we apply the time domain leapfrog scheme to (1a) and (2). The magnetic field H is sampled
at (n+1/2)∆t where n and ∆t are the time index and time step increment, respectively. Its iterative

equation from Hn1/2 to Hn+1/2 can be obtained from (1a) by using the central difference at n∆t:

Hn+1/2 = Hn−1/2 − ∆t

µ0
∇×En (3)

E and J are set time collocated, and both are sampled at n∆t. To obtain iterative equations from n∆t
to (n+1)∆t, we split (2) into two substep calculations, i.e., sub-step#1:
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for n∆t to (n+1/2)∆t; sub-step#2: for (n+1/2)∆t to n∆t by
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It should be noted that we make a split field implementation to improve the efficiency where the isotropic
properties are calculated in the first sub-step by (4), and the anisotropic effects are computed in the
second sub-step by (5). Also note that ∆t is the time increment from time index n to n+ 1.

Further, by applying the central difference to (4) at (n+1/4)∆t and (5) at (n+3/4)∆t, with some
mathematic manipulations, we have:

En+1/2 = En +
∆t

ε0
∇×Hn+1/4 − ∆t
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From (6a), it can be seen that Hn+1/4 is unknown, and it must be approximated by the known magnetic

field. For simplicity, we directly set Hn+1/4 = Hn+1/2. First substituting (6c) into (6a) and (6b), then
(6b) into (6a), we can obtain the explicit iterative equation for E from n∆t to (n+ 1)∆t as:

En+1 =
4 + 2ν∆t−∆t2ω2

p

4 + 2ν∆t+∆t2ω2
p

En +
4∆t− 2ν∆t2
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(
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p
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Substituting (6c) into (6b), we can obtain the explicit iterative equation for J from n∆t to (n+1/2)∆t
as:
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(8)

Note that (3), (6d), (7), and (8) are the iterative equations of our proposed method for magnetized
plasma. We can see that only J is calculated twice within one time step. Therefore, our proposed
method is more efficient than that provided in [11]. Moreover, the stability condition remains the same
as that of conventional FDTD in free space which will be checked in the next sections. For clarity, the
x component iterative equations can be derived as:
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Other equations can be obtained by circulating the notations of x, y, and z. Note that only
second-order central difference in space is considered in the next studies. Therefore, when calculating

Jx|n+1
i+1/2,j,k with (9d), Jy|n+1/2

i+1/2,j,k and Jz|n+1/2
i+1/2,j,k should be approximated by their neighbors in Yee’s

grids by:
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3. STABILITY CONDITION

The stability condition is analyzed by using the Fourier method as described in [12]. In it, first,
transforming the field components in Yee’s grids [1] from space to a spatial-spectral domain, e.g.,

Ex

∣∣∣n+1

i+1/2,j,k
= En+1

0x e−I(kx(i+1/2)∆x+kyj∆y+kzk∆y) (11)

here I is the imaginary unit; kx, ky, and kz are the wavenumbers along the x, y, and z-directions,
respectively. Then, substituting (11) into (10) and the iterative equations of other components, after
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some mathematic derivations, we have(
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here M9×9 is the growing matrix, and its detailed expression is not given here for space limitation. If
the proposed method is stable, all the eigenvalues should remain on or within the unit circle. Because it
is difficult even impossible to work out all the eigenvalues and give a theoretical analysis, we check the
stability condition by exhaustive numerical experiments with an extensive selection of the grid sizes, time
steps, and the plasm’s parameters. As known, to meet the stability condition of conventional second-
order FDTD for free space, the maximum time step is ∆tFDTD = 1/(c0

√
1/∆x2 + 1/∆y2 + 1/∆z2)

where c0 is the speed of light in free space [1]. In the experiments, we set ∆t = ∆tFDTD , ∆x = ∆y =
∆z = ∆ = 5× 10−5m, kx = cos(θ) cos(φ), ky = cos(θ) sin(φ), kz = sin(θ), θ = [0, 180◦] with ∆θ = 30◦,
φ = [0, 360◦] with ∆φ = 60◦, the plasma’s parameters: ωp = 10npHz with np = [1, 20] and ∆np = 1,
ωcx = ωcy = ωcz = 1ncHz with nc = [1, 20] and ∆np = 1, ν = 10nν Hz with nν = [1, 20] and ∆nν = 1.
The calculated eigenvalues are given in Figure 1. It can be seen that all of them are on or within the
unit circle. Therefore, for the selected parameters, the stability condition proposed method for plasma
remains the same as that of FDTD for free space.

Figure 1. Eigenvalues of growing matrix by an extensive selection of plasma parameters.

4. STABILITY AND EFFICIENCY INVESTIGATIONS

To check the stability and efficiency, a cubic PEC cavity with half-space plasma filled is calculated as
depicted in Figure 2. In the numerical experiments, we set ∆x = ∆y = ∆z = ∆ = 5× 10−5m the edge
length of the cavity L = 40∆, ∆t = ∆tFDTD = ∆/(c0

√
3), ωp = 1013Hz, ωcx = ωcy = ωcz = 1011Hz,

ν = 113Hz. A line current source, with the form of J(t) = e−4π(t−t0)2/τ2 here t0 = τ = 200∆t, located
from back to forth and 2∆ above the cavity center, is used to excite the electromagnetic field. We define
CFLN = ∆t/∆tFDTD (CFLN, Courant-Friedrich-Levy (CFL) Number [1]) as the parameter to check
the stability condition. The field observation point is set at 9∆ away from the line current center along
the y-direction.

Figure 2 shows the observed Ex computed by the proposed method with CFLN = 1. For
comparison, the results computed by the methods provided in [11] with CFLN = 1 and [8] with
CFLN = 0.901 and 0.903 are also given. The total time step is set as 1247∆tFDTD ≈ 0.12 ns in
all the simulations. We can see that the recorded field computed by the proposed method is almost
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Figure 3. Recorded Ex computed with a large
simulation total time step.

the same as that by [11]. Both of them agree well with that computed by [8] with CFLN = 0.901.
It should be noted that, as discussed in [13], the maximum CFLN of the method provided in [8] is

CFLNmax = 1/
√

1 + (ωp∆tFDTD/2)2 = 0.901. As expected, when we choose a slightly larger CFLN
e.g., 0.903, the field goes to infinity with the increase of time.

To further check the stability and efficiency, we run the simulations with a large total time step i.e.,
105∆tFDTD ≈ 9.6 ns. Figure 3 shows the recorded Ex computed with CFLN = 1 and those provided in
[8] with CFLN = 1 and in [11] with CFLN = 0.901. It is seen that our proposed method is always stable.
Therefore, we may conclude that compared with the method provided in [8], our proposed method is
stability-improved; the stability condition of our proposed method, being the same as that provided in
[11], is not plasma’s parameters dependent. As for the consumptions of total simulation times, they
are 55.5 s, 63.43 s, and 97.2 s for our proposed method, that provided in [8], and that provided in [11],
respectively. The simulation platform is a ThinkPad PC with CPU Intel i9-10885H 2.4GHz and RAM
128GB, Win10 OS, and Intel Fortran compiler. We can see that our proposed method is the most
efficient. To make a further comparison, the update equation for Ex provided in [11] is given as:
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where for the parameters we set c1 = 0.729407, c2 = 0.758275 × 10−3, c3 = −0762549 × 10−3,
c4 = −0634760 × 10−2, c5 = 0.177877 × 10−4, c6 = −0178879 × 10−4, c7 = 0.412322 × 10−5,
c8 = −0414646× 10−5, c9 = 0.940388× 10−2.

From (9b), we have:
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Comparing (13) with (14), it is obvious that our proposed method is more concise and efficient.
Moreover, because a reduced CFLN must be chosen when the method provided in [8] is used, the
total simulation time of [8] is larger than our proposed method. Therefore, our proposed method can
be used to efficiently investigate the practical problems with complex plasmonic structures.
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5. ACCURACY AND APPLICATIONS

To check the accuracy, the reflection and transmission characteristics of a magnetized plasma slab
are investigated. This structure is chosen because its analytical results exist. As depicted in
Figure 4, the total simulation domain is 20∆ × 20∆ × 420∆ including a 200∆ thick plasma slab
where ∆ = ∆x = ∆y = ∆z = 5 × 10−5m. The plasma’s parameters are set as ωp = 2 × 1011Hz,
ωcx = 0, ωcy = 0, ωcz = 1011Hz, ν = 1010Hz. The total field/scattered field boundary (TF/SF) is

applied to excite the electromagnetic field with a Gaussian current pulse Jx(t) = e−4π(t−t0)2/τ2 where
t0 = τ = 200∆t. Two observation points are set above and under the slab to record the fields which are
used to calculate the reflection and transmission coefficients. 10-layer convolutional perfectly matched
layers (CPML) [14] are used to absorb the outgoing EM fields. The periodic boundary condition (PBC)
is set in the x and y-directions to model an infinitely wide plasma slab.

The right circularly polarized (RCP) and left circularly polarized (LCP) reflection and transmission
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coefficients are computed by using the recorded fields at the observation points with [15]:

RRCP (f), TRCP (f) = 20 log10

(
|FFT (Ex,obs(t)) + jFFT (Ey,obs(t))|

|FFT (Ex,inc(t))|

)
(15a)

RLCP (f), TLCP (f) = 20 log10

(
|FFT (Ex,obs(t))− jFFT (Ey,obs(t))|

|FFT (Ex,inc(t))|

)
(15b)

where FFT means the fast Fourier transformation. Figure 4 shows the RCL reflection coefficient
computed by the proposed method. For comparison, the results of analytical [16] and computed by the
method provided in [11] are also given. It is seen that both the simulated lines are in good agreement
with the analytical one. To check the accuracy, the relative errors are calculated as in Figure 5. we can
see that the relative error of our proposed method is almost the same as that provided in [11]. To further
investigate the accuracy, the RCP transmission and LCP reflection coefficients are also computed as
in Figure 6. It is seen that they all agree well. Therefore, from all the investigations above, we may
conclude that our proposed method is more efficient than the methods provided in [8] and [11] while
keeping the same accuracy as the method provided in [11].

6. CONCLUSION

A new EJ collocated FDTD method for magnetized plasma has been developed in this paper. With
only the split field implementation for the current density, our proposed method is more efficient and
stability-improved than the methods provided by others while keeping its high accuracy. Therefore, the
proposed method can be applied to investigate the magnetized plasma-based structures efficiently and
accurately.
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