Vol. 110
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-09
Wireless Power Transmission System Based on Parity Time Symmetry for AUV
By
Progress In Electromagnetics Research M, Vol. 110, 223-234, 2022
Abstract
One of the main challenges in the application of wireless power transmission systems is to achieve stable power transmission and constant transmission power under dynamically changing coupling conditions. A parity-time symmetric model for AUV (autonomous underwater robot) is proposed. Based on the coupling mode theory, the robustness of the parity-time symmetric wireless transmission system is investigated. The theoretical analysis shows that the AUV wireless power transmission system based on parity time symmetry can automatically obtain constant output power and constant transmission efficiency when the coupling coefficient is varied. Based on this theory, the experimental prototype was built by simulating the effects of relevant parameters using LTspice. And the experiments were conducted in air medium and seawater medium respectively. The experimental results show that under the condition of parity time symmetry, the underwater wireless energy transmission voltage ratio is close to 1, and the transmission efficiency reaches 15%, in the range of 12.5 cm. The theoretical derivation has been verified.
Citation
You Fu, Zhuoqun Shi, Yu Zhu, and Zhouhua Peng, "Wireless Power Transmission System Based on Parity Time Symmetry for AUV," Progress In Electromagnetics Research M, Vol. 110, 223-234, 2022.
doi:10.2528/PIERM22032901
References

1. Manikandan, J., A. Vishwanath, and M. Korulla, "Design of a 1kW underwater wireless charging station for underwater data gathering systems," 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Vol. 34, No. 10, 211-216, 2013.

2. Wu, L., B. Zhang, and J. Zhou, "Efficiency improvement of the parity-time-symmetric wireless power transfer system for electric vehicle charging," IEEE Transactions on Power Electronics, Vol. 35, No. 15, 12497-12508, 2020.
doi:10.1109/TPEL.2020.2987132

3. Zhou, J., D. J. Li, and Y. Chen, "Frequency selection of an inductive contactless power transmission system for ocean observing," Ocean Engineering, Vol. 60, No. 5, 175-185, 2013.
doi:10.1016/j.oceaneng.2012.12.047

4. Hamam, R. E., A. Karalis, J. D. Joannopoulos, et al. "Efficient weakly-radiative wireless energy transfer: An EIT-like approach," Annals of Physics, Vol. 324, No. 8, 1783-1795, 2009.
doi:10.1016/j.aop.2009.05.005

5. Beh, T. C., et al. "Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching," IEEE International Symposium on Industrial Electronics, 2011-2016, 2013.

6. Ali, B. J., Y. Lee, and Y. Kim, "Design and implementation of autonomous wireless charging station for rotary-wing UAVs," Aerospace Science and Technology, Vol. 54, No. 7, 253-266, 2016.

7. Wang, C. and M. Zheng, "Design of wireless power transfer device for UAV," 2016 IEEE International Conference on Mechatronics & Automation, 2449-2454, 2016.
doi:10.1109/ICMA.2016.7558950

8. Campi, T., F. Dionisi, S. Cruciani, et al. "Magnetic field levels in drones equipped with Wireless Power Transfer technology," Asia-pacific International Symposium on Electromagnetic Compatibility, 544-547, 2016.

9. Mostafa, T. M., A. Muharam, and R. Hattori, "Wireless battery charging system for drones via capacitive power transfer," IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), 1-6, 2017.

10. Kelis, G., S. Aldhaher, J. M. Arteaga, et al. "Hybrid class-E synchronous rectifier for wireless powering of quadcopters," IEEE Wireless Power Transfer Conference (WPTC), 1-4, 2017.

11. Aldhaher, S., P. D. Mitcheson, J. M. Arteaga, et al. "Light-weight wireless power transfer for mid- air charging of drones," 2017 11th European Conference on Antennas and Propagation (EUCAP), 336-340, 2017.
doi:10.23919/EuCAP.2017.7928799

12. Assawaworrarit, S., X. Yu, and S. Fan, "Robust wireless power transfer using a nonlinear parity- time-symmetric circuit," Nature, Vol. 546, No. 7658, 387-390, 2017.
doi:10.1038/nature22404

13. Schindler, J., A. Li, M. C. Zheng, et al. "Experimental study of active LRC circuits with PT symmetries," Physical Review, Vol. 84, No. 1, 4-4, 2011.

14. Bertolotti, M., "Waves and fields in optoelectronics," Prentice-Hall, Vol. 32, No. 7, 748-748, 1985.

15. Schindler, J., Z. Lin, J. M. Lee, et al. "PT-symmetric electronics," Journal of Physics A: Mathematical & Theoretical, Vol. 45, No. 44, 2077-2082, 2012.
doi:10.1088/1751-8113/45/44/444029

16. Hassan, A. U., et al. "Nonlinear reversal of PT symmetric phase transition in a system of coupled semiconductor micro-ring resonators," SPIE Nanoscience + Engineering 2016, 2016.

17. Fu, M., H. Yin, X. Zhu, et al. "Analysis and tracking of optimal load in wireless power transfer systems," IEEE Transactions on Power Electronics, Vol. 30, No. 7, 3952-3963, 2015.
doi:10.1109/TPEL.2014.2347071

18. Liu, F., Y. Yang, Z. Ding, et al. "A multifrequency superposition methodology to achieve high efficiency and targeted power distribution for a multiload MCR WPT system," IEEE Transactions on Power Electronics, Vol. 33, No. 10, 9005-9016, 2017.
doi:10.1109/TPEL.2017.2784566