Vol. 103
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2022-04-20
Miniaturized, Dual-Polarized Corner-Fed Microstrip Antenna with Cylindrical Cavity Enclosure Working in L-Band
By
Progress In Electromagnetics Research Letters, Vol. 103, 137-142, 2022
Abstract
In this article, a miniaturized, dual-polarized corner-fed microstrip antenna is designed and fabricated at 1.43 GHz for Low Earth Orbit (LEO) Satellite applications. The antenna adopts a Complementary Split-Ring Resonator (CSRR)-inspired structure and slotted patch to achieve miniaturization. This reduces the patch size by 39.4%. Meandered impedance-transforming lines are placed for impedance tuning, and its benefit is demonstrated by both simulated and measured S11 curves reaching lower than -20 dB. Feeding at corner increases its isolation to -25 dB over the whole bandwidth of 40 MHz and reaches lower than -33 dB at the resonant frequency. The antenna is fabricated and tested. Measured results are generally in good agreement with simulations.
Citation
Peizhuo Yang, Lizhong Song, and Yuanyuan Zhang, "Miniaturized, Dual-Polarized Corner-Fed Microstrip Antenna with Cylindrical Cavity Enclosure Working in L-Band," Progress In Electromagnetics Research Letters, Vol. 103, 137-142, 2022.
doi:10.2528/PIERL22030702
References

1. Ghosh, C. K., et al. "Slotted microstrip antenna for miniaturization," 2020 National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA), 1-4, 2020, doi: 10.1109/NCETSTEA48365.2020.9119935.

2. Verma, R. and S. Kumar, "Design and analysis of fractal geometry loaded microstrip patch antenna," 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), 243-247, 2020, doi: 10.1109/ICCCA49541.2020.9250848.
doi:10.1109/ICCCA49541.2020.9250848

3. Vani, H. R., M. A. Goutham, and Paramesha, "Comparative study of square and circular split ring resonator metamaterial for patch antenna miniaturization for C-band wireless applications," 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC), 1-2, 2019, doi: 10.1109/ICRAECC43874.2019.8995105.

4. Nawaz, H. and I. Tekin, "Three ports microstrip patch antenna with dual linear and linear co-polarisation characteristics," Electron. Lett., Vol. 53, No. 8, 518-520, 2017.
doi:10.1049/el.2016.2923

5. Yang, H., Y. Fan, and X. Liu, "A compact dual-band stacked patch antenna with dual circular polarizations for beidou navigation satellite systems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1472-1476, July 2019, doi: 10.1109/LAWP.2019.2920265.
doi:10.1109/LAWP.2019.2920265

6. Long, J. and D. F. Sievenpiper, "A compact broadband dual-polarized patch antenna for satellite communication/navigation applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 273-276, 2015, doi: 10.1109/LAWP.2014.2362125.
doi:10.1109/LAWP.2014.2362125

7. Yang, X., Q. Feng, D. Tian, and Z. Zheng, "A wide-band dual circular polarization UHF RFID reader antenna based on miniaturized branch line coupler," 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 1290-1294, Toyama, Japan, Aug. 1-4, 2018.

8. Chen, S. J., W. Withayachumnankul, Y. Monnai, and C. Fumeaux, "Linear series-fed patch array with dual circular polarization or arbitrary linear polarization," 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 0365-0369, 2019, doi: 10.1109/ICEAA.2019.8879041.
doi:10.1109/ICEAA.2019.8879041

9. Chopra, R., G. Kumar, and R. Lakhmani, "Corner fed microstrip antenna array with reduced cross polarization and side lobe level," 2016 Asia-Paci c Microwave Conference (APMC), 1-4, 2016, doi: 10.1109/APMC.2016.7931473.

10. Wang, H., X. B. Huang, and D. G. Fang, "A novel corner-fed patch to reduce cross-polarization for a microstrip antenna array," 2008 Asia-Paci c Microwave Conference, 1-4, 2008, doi: 10.1109/APMC.2008.4957951.