Vol. 109
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-03-30
Analysis of Magnetic Field and Torque of Magnetic Gear with Rotor Copper Bar
By
Progress In Electromagnetics Research M, Vol. 109, 101-111, 2022
Abstract
Magnetic gear has high torque density and efficiency, and has a good application prospect in the field of low speed and high torque transmission. Accurate calculation of its air gap magnetic field is the key to analyze and design the magnetic gear. In order to improve the output torque of magnetic gear, the inner rotor is slotted, and copper bar is added in this paper. The air gap magnetic field of magnetic gear with rotor copper bar is calculated by two-dimensional analytical method. The solution domain is divided into four sub-domains, i.e., permanent magnets, air gaps, slots, and rotor copper bars. The solutions of Laplace's equation, Poisson's equation, and Helmholtz's equation are obtained by boundary conditions and continuity conditions. The distributions of air gap magnetic field, the induced current of rotor copper bars, and electromagnetic torque are obtained. The calculation results of this method are basically consistent with those of the finite element method, which proves the correctness and rationality of the analytical model.
Citation
Jie Li, Xiaocun Huang, and Libing Jing, "Analysis of Magnetic Field and Torque of Magnetic Gear with Rotor Copper Bar," Progress In Electromagnetics Research M, Vol. 109, 101-111, 2022.
doi:10.2528/PIERM22030202
References

1. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, Jul. 2001.
doi:10.1109/20.951324

2. Jing, L., Z. Huang, J. Chen, and R. Qu, "An asymmetric pole coaxial magnetic gear with unequal Halbach arrays and spoke structure," IEEE Trans. Appl. Supercond., Vol. 30, No. 4, 1-5, Art No. 5200305, Jun. 2020.

3. Zhang, X., X. Liu, and Z. Chen, "A novel dual-flux-modulator coaxial magnetic gear for high torque capability," IEEE Trans. Energy Conversion, Vol. 33, No. 2, 682-691, Jun. 2018.
doi:10.1109/TEC.2017.2778285

4. Jing, L., Z. Huang, J. Chen, and R. Qu, "Design, analysis, and realization of a hybrid-excited magnetic gear during overload," IEEE Trans. Ind. Appl., Vol. 56, No. 5, 4812-4819, Sept.-Oct. 2020.
doi:10.1109/TIA.2020.3004425

5. Rens, J., K. Atallah, S. Calverley, and D. Howe, "A novel magnetic harmonic gear," 2007 IEEE International Electric Machines & Drives Conference, 698-703, 2007.
doi:10.1109/IEMDC.2007.382752

6. Zhao, X. and S. Niu, "Design and optimization of a new magnetic-geared pole-changing hybrid excitation machine," IEEE Trans. Indus. Electr., Vol. 64, No. 12, 9943-9952, Dec. 2017.
doi:10.1109/TIE.2017.2716879

7. Khang, H. and A. Arkkio, "Eddy-current loss modeling for a form-wound induction motor using circuit model," IEEE Trans. Magn., Vol. 48, No. 2, 1059-1062, Feb. 2012.
doi:10.1109/TMAG.2011.2173661

8. Lubin, T., S. Mezani, and A. Rezzoug, "Exact analytical method for magnetic field computation in the air gap of cylindrical electrical machines considering slotting effects," IEEE Trans. Magn., Vol. 46, No. 4, 1092-1099, Apr. 2010.
doi:10.1109/TMAG.2009.2036257

9. Aiso, K., K. Akatsu, and Y. Aoyama, "A novel reluctance magnetic gear for high-speed motor," IEEE Trans. Ind. Appl., Vol. 55, No. 3, 2690-2699, May/Jun. 2019.
doi:10.1109/TIA.2019.2900205

10. Lubin, T., S. Mezani, and A. Rezzoug, "Development of a 2-D analytical model for the electromagnetic computation of axial-field magnetic gears," IEEE Trans. Magn., Vol. 49, No. 11, 5507-5521, Nov. 2013.
doi:10.1109/TMAG.2013.2267746

11. Rahideh, A., A. Vahaj, and M. Mardaneh, "Two dimensional analytical investigation of the parameters and the effects of magnetization patterns on the performance of coaxial magnetic gears," Electrical Systems Trans., Vol. 7, No. 3, 230-245, May 2017.
doi:10.1049/iet-est.2016.0070

12. Desvaux, M., B. Traullé, R. Le Goff Latimier, S. Sire, B. Multon, and H. Ben Ahmed, "Computation time analysis of the magnetic gear analytical model," IEEE Trans. Magn., Vol. 53, No. 5, 1-9, May 2017.
doi:10.1109/TMAG.2017.2671787

13. Zhu, Z. and D. Howe, "Instantaneous magnetic field distribution in brushless permanent magnet DC motors. II. Armature-reaction field," IEEE Trans. Magn., Vol. 29, No. 1, 136-142, Jan. 1993.
doi:10.1109/20.195558

14. Lubin, T., S. Mezani, and A. Rezzoug, "Analytic calculation of eddy currents in the slots of electrical machines: Application to cage rotor induction motors," IEEE Trans. Magn., Vol. 47, No. 11, 4650-4659, Nov. 2011.
doi:10.1109/TMAG.2011.2157167