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Analysis of Magnetic Field and Torque of Magnetic Gear
with Rotor Copper Bar

Jie Li1, Xiaocun Huang1, and Libing Jing2, *

Abstract—Magnetic gear has high torque density and efficiency, and has a good application prospect
in the field of low speed and high torque transmission. Accurate calculation of its air gap magnetic
field is the key to analyze and design the magnetic gear. In order to improve the output torque of
magnetic gear, the inner rotor is slotted, and copper bar is added in this paper. The air gap magnetic
field of magnetic gear with rotor copper bar is calculated by two-dimensional analytical method. The
solution domain is divided into four sub-domains, i.e., permanent magnets, air gaps, slots, and rotor
copper bars. The solutions of Laplace’s equation, Poisson’s equation, and Helmholtz’s equation are
obtained by boundary conditions and continuity conditions. The distributions of air gap magnetic field,
the induced current of rotor copper bars, and electromagnetic torque are obtained. The calculation
results of this method are basically consistent with those of the finite element method, which proves the
correctness and rationality of the analytical model.

1. INTRODUCTION

To realize the function of variable speed and torque transmission coaxial magnetic gear (CMG) changes
the air gap permeance between the inner and outer layers through the middle magnetic stationary
ring [1]. Compared with conventional mechanical gear, CMG has many advantages, such as no noise,
no maintenance, high efficiency, high torque density, and overload protection. To improve the torque
density of magnetic gear, scholars have proposed a variety of topological structures [2–4]. Especially,
not only the eccentric harmonic magnetic gear structure overcomes the defects of magnetic gear due
to large transmission ratio, and torque density decreases sharply, but also the torque density can reach
150 kNm/m3 [5]. The composite motor composed of coaxial magnetic gear and rotary motor has broad
application prospects in low speed and high torque transmission occasions [6].

Accurate calculation of air gap magnetic field of magnetic gear is the key to analyze and design
magnetic gear. Two-dimensional magnetic field can be calculated by finite element method and
analytical method. The finite element method is an effective numerical analysis method, which is
widely used in the field of motor design and similar magnetic field calculation. It has good accuracy
in calculating the air gap magnetic field, torque, and induced eddy current with rotor copper bars [7].
The calculation accuracy of this method is high, but it takes a long time, and the size optimization
is not convenient. The analytic method has clear concept, convenient adjustment of parameters, fast
calculation speed, and can directly reflect the relationship between various physical quantities. Since
the magnetic gear has a complex structure, including two rotating rotors and static magnetic regulating
rings, the design process of finite element method is more complex and time-consuming than that of
analytical method. Therefore, the analytic method is an effective method for evaluating the preliminary
design of magnetic gear.
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In [8], Lunbin et al. proposed a mathematical model of radial magnetized permanent magnet coaxial
magnetic gear, which can accurately solve the magnetic field distribution and electromagnetic torque of
magnetic gear. This method has certain guiding significance for the design of concentric magnetic gear.
In [9], a similar two-dimensional analytical method was used to analyze a concentric magnetic gear with
the same magnetization direction of the inner and outer rotor permanent magnets. This structure can
increase the effective flux and provide additional reluctance torque. In [10], an analytical model of axial
magnetic gear is established, and the air gap magnetic field and electromagnetic torque of magnetic gear
are calculated by analytical method. In [11], the influences of pole number, magnetization mode, and
slot size of magnetic gear on torque and unbalanced magnetic force are analyzed in detail by analytical
method. In [12], the authors compared the calculation time of two-dimensional analytical method,
optimized two-dimensional analytical method, and finite element method for calculating the magnetic
field analysis time of magnetic gear. The results show that the analytical method and finite element
method have significant differences in time.

In this paper, the magnetic field of magnetic gear with copper bar rotor is calculated by two-
dimensional analytical method, and the influence of pole arc coefficient of the inner rotor on air gap
magnetic field is considered. In order to improve the electromagnetic performance under overload
conditions, the inner rotor increases the rotor copper bar to improve the torque. The solution field
is divided into four sub-regions, namely, permanent magnet region, air gap region, slot region, and
rotor copper bar region. The Laplace equation, Poisson equation, and Helmholtz equation in the
corresponding region are solved by boundary conditions and continuity conditions, and the air gap
magnetic field distribution can be obtained. The electromagnetic torque was calculated by the Maxwell
stress tensor method. The correctness and effectiveness of the analytical model are verified by comparing
the analytical results with the finite element analysis (FEA).

2. ANALYTICAL MODEL

Figure 1 shows the structural model of magnetic gear with rotor copper bar. Different from the
conventional magnetic gear structure, the magnetic poles of the two permanent magnets (PMs) of
the inner rotor are slotted and put into the copper bar. At the same time, the outer rotor and inner
rotor are set as stationary parts, and the magnetic ring and inner rotor are rotating. The stationary
ring and inner rotor are rotating and are designed as the outer rotor and inner rotor, respectively. The
model consists of 7 sub-regions, namely, the inner and outer permanent magnet sub-regions (I and IV),
inner and outer air gap sub-regions (II and III), slot sub-regions (i), inner rotor slot sub-regions (j), and
rotor copper bar sub-regions (b). Rotor copper bar was evenly distributed in the inner rotor. Table 1
shows the parameters of magnetic gear.

(a) (b)

Figure 1. Magnetic gear. (a) Conventional model. (b) Magnetic gear with rotor copper bar.
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Table 1. Parameters of CMG.

Symbol Parameters Value

Rb Inner radius of rotor copper bar 55mm

R1 Outer radius of inner rotor core yoke 60mm

R2 Outer radius of inner rotor PM 70mm

R3 Inner radius of outer rotor of magnetic ring 71mm

R4 Outer radius of outer rotor of magnetic ring 86mm

R5 Inner radius of external stator PM 87mm

R6 Inner radius of outer stator core yoke 97mm

pi Pole number of inner rotor PM 4

po Pole number of outer stator PM 17

Q Pole number of outer rotor of magnetic station ring 21

b Copper bar of inner rotor 8

Br Remanence of PM 1.1T

σ Conductivity of copper bar 5.8× 107 S/m

αp Polar arc coefficient of inner rotor 0.95

βi Slot width of magnetic ring 8.57◦

βr Slot width of copper bar 2.25◦

For the convenience of analysis, the following assumptions are made: (1) ignoring the end effect;
(2) The permanent magnet is magnetized radially with constant permeability and remanence; (3) The
permeability of the iron core is infinite; (4) The angular velocity of the rotor is known and constant;
(5) The conductivity of copper bar is constant.

The magnetization of permanent magnet in two-dimensional field can be expressed as:
→
M = Mr

→
r +Mθ

→
θ (1)

Due to the radial magnetization, only the radial component Mr and tangential component Mθ are
0. The magnetization expression is r and θ function [13]:

Mr(θ)
−→r =

∞∑
n=1,3,5,...

[Mn cosnp(θ − θ0)]
−→r (2)

where

Mn =
4Br

nπµ0
sin
(nπαp

2

)
(3)

where p is the number of pole pairs of the permanent magnet, αp the pole arc coefficient, θ0 the offset
angle between the permanent magnet and the initial reference position, and Br the remanence of the
permanent magnet.

2.1. Magnetic Field Calculation

The vector magnetic potential equations in each subregion are composed of the following equations:
Laplace equation, Poisson equation, and Helmholtz equation.

In the permanent magnet regions (I and IV), the Poisson equation is:

∂2AI,IV

∂r2
+

1

r

∂AI,IV

∂r
+

1

r2
∂2AI,IV

∂θ2
=

µ0

r

∂Mr

∂θ
(4)

where AI and AIV are the vector magnetic potential of internal and external permanent magnets,
respectively; Mr is the magnetization of the permanent magnet; µ0 is the vacuum permeability.
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The Laplace equation of the inner and outer air gap regions (II and III), the slot region (i) in the
magnetic regulating ring, and the inner rotor slot region (j) is:

∂2AII,III,i,j

∂r2
+

1

r

∂AII,III,i,j

∂r
+

1

r2
∂2AII,III,i,j

∂θ2
= 0 (5)

where AII and AIII are the vector magnetic potential in the inner and outer air gap regions, respectively;
Ai andAj are the vector magnetic potential of the outer rotor and inner rotor slot subregion, respectively.

The Helmholtz equation of rotor copper bar subregion (b) is:

∂2Ab

∂r2
+

1

r

∂Ab

∂r
+

1

r2
∂2Ab

∂θ2
= jωrnσµ0Ab (6)

where Ab is the vector magnetic potential in the rotor copper bar region; ωrn is the angular velocity of
the nth harmonic rotating magnetic field; σ is the conductivity of copper bar.

The vector magnetic potential of each sub-region has only Z-axis component in the two-dimensional
polar coordinate, so the vector magnetic potential equation (A) of each sub-region is expressed as a
function of the sum of r and θ.

The expression of internal and external air gap vector magnetic potential can be expressed as [8]:

AII(r, θ) =

∞∑
n=1

(AII
n r

n+BII
n r

−n) cos(nθ) +

∞∑
n=1

(CII
n r

n +DII
n r

−n) sin(nθ) (7)

AIII(r, θ) =

∞∑
n=1

(AIII
n rn+BIII

n r−n) cos(nθ) +

∞∑
n=1

(CIII
n rn +DIII

n r−n) sin(nθ) (8)

where AII
n , B

II
n , C

II
n , D

II
n and AIII

n , BIII
n , CIII

n , DIII
n are constants.

For the inner permanent magnet region, the vector magnetic potential expression is:

AI(r, θ) =
∞∑
n=1

[AI
nr

n +BI
nr

−n+Un(r) cos(nϕi)] cos(nθ)+
∞∑
n=1

[CI
nr

n+DI
nr

−n+Un(r) sin(nϕi)] sin(nθ) (9)

where AI
n, B

I
n, C

I
n, D

I
n is a constant, and ϕi is the initial angle of the inner rotor rotation. The Un(r) in

the formula can be expressed as:

Un(r) =

 4Brpir
/
(π(1− n2)), n = mpi, m = 1, 3, 5, . . .

2Brr ln r/π, ∇ = pi = 1
0, elsewhere.

For the outer permanent magnet region, the vector magnetic potential expression is:

AIV(r, θ) =

∞∑
n=1

[AIV
n rn +BIV

n r−n+Vn(r) cos(nϕo)] cos(nθ)+

∞∑
n=1

[CIV
n rn+DIV

n r−n+Vn(r) sin(nϕo)] sin(nθ)

(10)
where AIV

n , BIV
n , CIV

n , DIV
n is a constant; ϕo is the initial angle of the outer rotor; the outer rotor is

stationary. The Vn(r) in the formula can be expressed as:

Vn(r) =

 4Brpor
/
(π(1− n2)), n = mpo, m = 1, 3, 5, . . .

2Brr ln r/π, ∇ = po = 1
0, elsewhere.

where po represents the pole pairs of the permanent magnets of the outer stator.
The expressions of vector magnetic potential in the subregions of the i-slot and j-slot are as follows:

Ai(r, θ) = Ai
0 +Bi

0 ln r +
∞∑
k=1

(
Ai

k

(
r

R4

) kπ
βi

+Bi
k

(
r

R3

)− kπ
βi

)
cos

[
kπ

βi
(θ − θi)

]
(11)

Aj(r, θ) = Aj
0 +Bj

0 ln r +

∞∑
k=1

(
Aj

k(r)
kπ
βr +Bj

k(r)
− kπ

βr

)
cos

[
kπ

βr
(θ − θr)

]
(12)
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Ai
0, B

i
0, A

j
0, B

j
0A

i
k, B

i
k, A

j
k, B

j
k are constants, and θi and θj are the position angles of the i slot of the

magnetic ring and the j slot of the inner rotor, respectively. βi and βr are slot widths of the magnetic
ring and inner rotor, respectively.

For the rotor copper bar region, the vector magnetic potential expression is:

Ab(r, θ) = Ab
0J0(αr) +Bb

0Y0(αr) +

∞∑
k=1

(Ab
kJkπ/βb

(αr) +Bb
kYkπ/βb

(αr)) cos

[
kπ

βb
(θ − θb)

]
(13)

Ab
0, B

b
0, A

b
k, B

b
k are constants; βb is the slot width of rotor copper bar; θb is the initial position

angle of rotor copper bar; J0 and Jkπ/βb are Bessel functions of the first kind; Y0 and Ykπ/βb are Bessel
functions of the second kind. In [14], the rotor copper bars are analyzed in detail.

2.2. Boundary Conditions

Figure 2 shows the boundary conditions of the rotor copper bar. Both sides and bottom of the rotor
copper bar are in contact with silicon steel, and the tangential magnetic density of these boundaries is
0. Its mathematical expression is: 

Ab(R1, θ) = Aj(R1, θ)

∂Ab

∂r

∣∣∣∣
r=Rb

= 0

∂Ab

∂θ

∣∣∣∣
θ=θb

= 0

∂Ab

∂θ

∣∣∣∣
θ=θb+βb

= 0

(14)



∆Ab=jωrnσµ0Ar

Rotor bar

x
R1Rb

θb

βb

Ab Aj

(∂Ab/∂θ)=0

(∂Ab/∂θ)

∂Ab/∂r=0

y

=

=0

Figure 2. Boundary conditions of rotor copper bar sub-region.

Similarly, the boundary conditions of the i-slot and j-slot are shown in Fig. 3.
The i-slot boundary condition is:

Ai(R3, θ) = AII(R3, θ); Ai(R4, θ) = AIII(R4, θ)

∂Ai

∂θ

∣∣∣∣
θ=θi

= 0;
∂Ai

∂θ

∣∣∣∣
θ=θi+βi

= 0
(15)
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Figure 3. Boundary conditions of sub-region. (a) The i-slot boundary condition. (b) The j-slot
boundary condition.

The j-slot boundary condition is:
Aj(R1, θ) = Ab(R1, θ); Aj(R2, θ) = AII(R2, θ)

∂Aj

∂θ

∣∣∣∣
θ=θj

= 0;
∂Aj

∂θ

∣∣∣∣
θ=θj+βr

= 0
(16)

For j-slot, the boundary continuity condition is:

∂Aj

∂r

∣∣∣∣
r=R1

=
∂Ab

∂r

∣∣∣∣∣
r=R1

∂AII

∂r

∣∣∣∣
r=R2

=


∂Aj

∂r

∣∣∣∣
r=R2

, θj ≤ θ ≤ θj + βr

0, elsewhere.

(17)

The radial component (BIIr) and tangential component (BIIθ) of the inner air gap flux density can
be obtained by derivation of the inner air gap vector magnetic potential expression according to the
following formula. 

BIIr =
1

r

∂AII

∂θ

BIIθ = −∂AII

∂r

(18)

Therefore, the radial component and tangential component of the inner air gap flux density are
respectively expressed as:

BIIr(r, θ) =

∞∑
n=1

−(AII
nnr

n−1+BII
n nr

−n−1) sin(nθ) +

∞∑
n=1

(CII
n nr

n−1 +DII
n nr

−n−1) cos(nθ) (19)

BIIθ(r, θ) =
∞∑
n=1

−(AII
nnr

n−1−BII
n nr

−n−1) cos(nθ) +
∞∑
n=1

−(CII
n nr

n−1 −DII
n nr

−n−1) sin(nθ) (20)

Similarly, the radial and tangential components of the outer air gap flux density can also be obtained
and are no longer listed here.
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2.3. Current Density and Current of Rotor Copper Bar

According to the current density equation, the expression of induced current density in rotor copper
bar is

Jb(r, θ) = −jωrnσAb(r, θ) (21)

Therefore, the induced current in the b-th rotor copper bar is:

Ib =

∫ R1

Rb

∫ θb+βb

θb

Jb(r, θ)rdrdθ (22)

Substituting Eq. (21) into Eq. (22), the current expression of each rotor copper bar can be obtained:

Ib =
−jωrnσA

b
0βbR1

α
×
(
J1(αRb)Y1(αR1)− J1(αR1)Y1(αRb)

J0(αRb)Y1(αR1)− J1(αR1)Y0(αRb)

)
(23)

In the formula, α2 = −jσωrnµ0, J and Y are the first Bessel function and the second Bessel function,
respectively.

3. ELECTROMAGNETIC TORQUE

Electromagnetic torque is one of the important parameters to measure the performance of the magnetic
gear. According to the Maxwell stress tensor method, the radial and tangential components of inner
air gap flux density calculated by formula (19) and formula (20) are substituted into formula (14). The
electromagnetic torque of the inner rotor of magnetic gear is obtained as follows:

Tem =
Lef

u0

∫ 2π

0
r2BIIrBIIθdθ (24)

where Lef is the axial effective length of magnetic gear; r is any circumference radius in the inner air
gap. Similarly, the electromagnetic torque output by the magnetic regulating ring can also be obtained.

4. CALCULATION EXAMPLES AND COMPARISON

In order to verify the accuracy and effectiveness of the analytical model, this paper uses Matlab to
program the analytical expression of each field and compares the analytical calculation results with
the FEA results under Ansys software. The selected model parameters are shown in Table 1. In the
analytical model, the harmonic number of the magnetic field in the air gap region is 150, and the
harmonic number of the magnetic field in the slot region is 50.

The initial phase angles of the outer stator permanent magnet and the magnetic regulating stator
slot are set to 0◦, and the rotation speed of the inner rotor is set to 525 r/min. At a certain time, the
magnetic line of the magnetic gear and the eddy current distribution of the rotor copper bar are shown
in Fig. 4.

Figure 5 shows the comparison between the analytical calculation results of radial magnetic density
and tangential magnetic density at the middle of the air gap in the inner layer of the magnetic gear
(r = 70.5mm) and the FEA results.

Figure 6 shows the comparison between the analytical calculation results of radial magnetic density
and tangential magnetic density at the middle of the outer air gap of the magnetic gear (r = 86.5mm)
and the FEA results.

It can be seen from Fig. 5 and Fig. 6 that the radial and tangential air-gap magnetic densities
of the inner and outer layers of the magnetic gear with rotor copper bars calculated by the analytical
method are basically consistent with those calculated by the FEA in the waveform, which verifies that
the analytical model proposed in this paper is accurate and effective.

Figure 7 shows the current density distribution of a rotor copper bar from the bottom of the rotor
slot to the top of the slot.

It can be seen from Fig. 7 that due to the skin effect, the current density of the rotor copper bar
near the slot is large. The current density at the end of the rotor copper bar at the bottom of the slot
is small. The results obtained by the analytical method are in good agreement with the FEA results.
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Figure 4. Distribution of magnetic line and eddy current of copper bar.
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Figure 5. Flux density distribution in the inner air gap: (a) Radial component; (b) Tangential
component.
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Figure 6. Flux density distribution in the outer air gap: (a) Radial component; (b) Tangential
component.
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Figure 7. Current density distribution.
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Figure 8. Current distribution of rotor copper
bar.

According to formula (23), the total current of each rotor copper bar can be calculated. The results
of analytical method and FEA are shown in Fig. 8. It can be seen from the figure that the analytical
calculation results of rotor copper bar current are basically consistent with the FEA results.

Figure 9 shows the static torque comparison diagram of the magnetic gear. The position of the
magnetic regulating rotor and outer stator is fixed. The high-speed inner rotor is rotated from 0◦ to
45◦, and a point is taken every 1◦. The analytical solution of the static torque of the magnetic gear can
be calculated by Equation (24). At the same time, the analytical results are compared with the FEA
results.
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Figure 9. Static torque: (a) Inner rotor; (b) Outer rotor.

It can be seen from Fig. 9 that the static torque of the inner rotor and the rotor of the magnetic
ring calculated by the analytical method is sine wave. The analytical calculation results are consistent
with the finite element calculation results. The ratio of the torque value at the same position is 5.25 : 1,
which is in line with the magnetic gear transmission ratio. When the inner rotor rotates to 22.5◦, the
two torque values reach the maximum.

Figure 10 is the steady-state torque analytical calculation results of two rotors output at a certain
rotating speed. It can be seen from the figure that the ratio of the output torque value of the inner
rotor and the magnetic regulating ring is 5.25 : 1. Compared with the conventional coaxial radial
magnetization magnetic gear, the torque output value increased from 178.04Nm to 207.66Nm. The
main reason is the magnetoresistance effect of copper bar eddy current in rotating magnetic field.
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Table 2. Time comparison.

Type Analytical method FEA

Time(s) 2.39 48.67

Table 2 shows the time consumed by the two calculation methods. It can be seen that the analytical
method has the advantage of calculation time.
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Figure 10. Electromagnetic torque.

5. CONCLUSION

The magnetic field distribution and electromagnetic torque of magnetic gear with copper bar in inner
rotor are calculated by subdomain model analysis method. The analytical model of magnetic gear with
rotor copper bar is established, and the Laplace equation, Poisson equation, and Helmholtz equation of
various subregions are connected by boundary conditions and boundary continuity conditions to obtain
the vector magnetic potential equation of each region. The air gap flux density and electromagnetic
torque of the inner and outer layers of the magnetic gear are calculated by a numerical example model.
The analytical results are in good agreement with the finite element calculation results, which verifies the
correctness and effectiveness of the analytical method. At the same time, the output torque increases
due to the existence of rotor copper bar eddy current, which can improve the carrying capacity of
magnetic gear. Therefore, the proposed analytical model can provide a reference for the optimal design
of magnetic gear.
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