Vol. 175
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-07-21
An Elliptically Polarized Wave Injection Technique via TF/SF Boundary in Subdomain Level DGTD Method
By
Progress In Electromagnetics Research, Vol. 175, 13-27, 2022
Abstract
This study presents an effective solution on the basis of Discontinuous-Galerkin Time-Domain (DGTD) scheme for the injection of elliptically polarized plane wave through total-field/scattered-field (TF/SF) boundary. Generally, the elliptically polarized wave can be resolved into two linearly polarized waves in phase quadrature with the polarization planes at right angles to each other, but the proposed methodology is focused to utilize the principle of wave field formation to induce left-handed or right-handed elliptically polarized waves by regulating the phase and amplitude of the incident waves. The outcome of the proposed technique is achieved by deriving the EB-scheme equations and employing the explicit fourth order Runge-Kutta (RK4) time integration scheme in the DGTD methodology. An anisotropic Riemann solver and non-conformal mesh schemes are introduced for domain decomposition to allow efficient spatial discretization. Additionally, the proposed work is extended from single frequency to broadband elliptical polarized plane wave injection in the DGTD method, and the significance of this study is observed in the results. The experimental outcomes reveal that the proposed method is consistent with the analytical solution in free space and expected to provide efficient numerical solutions for analyzing scattering characteristics generated by various elliptically polarized waves.
Citation
Xiaobing Han, Hang Li, Yuanguo Zhou, Lin Wang, Shangqing Liang, and Fawad Javaid, "An Elliptically Polarized Wave Injection Technique via TF/SF Boundary in Subdomain Level DGTD Method," Progress In Electromagnetics Research, Vol. 175, 13-27, 2022.
doi:10.2528/PIER22022204
References

1. Merewether, E., R. Fisher, and F. W. Smith, "On implementing a numeric Huygen's source scheme in a finite difference program to illuminate scattering bodies," IEEE Trans. Nucl. Sci., Vol. 27, No. 6, 1829-1833, Dec. 1980.
doi:10.1109/TNS.1980.4331114

2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.

3. Schneider, J. B., "Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary," IEEE Trans. Antennas Propag., Vol. 52, No. 12, 3280-3287, Dec. 2004.
doi:10.1109/TAP.2004.836403

4. Hadi, M. F., "A versatile split-field 1-D propagator for perfect plane wave injection," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2691-2697, Sept. 2009.
doi:10.1109/TAP.2009.2027171

5. Tan, T. and M. Potter, "Optimized analytic filed propagator (O-AFP) for plane wave injection in FDTD simulations," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 824-831, Mar. 2010.
doi:10.1109/TAP.2009.2039310

6. Tan, T. and M. Potter, "FDTD discrete plane wave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2641-2648, Aug. 2010.
doi:10.1109/TAP.2010.2050446

7. Anantha, V. and A. Taflove, "Efficient modeling of infinite scatterers using a generalized total-field/scattered-field FDTD boundary partially embedded within PML," IEEE Trans. Antennas Propag., Vol. 50, No. 10, 1111-1119, Oct. 2002.

8. Capoglu, I. R. and G. S. Smith, "A total-field/scattered-field plane wave source for the FDTD analysis of layered media," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 158-169, Jan. 2008.
doi:10.1109/TAP.2007.913088

9. Riley, D. J., J. M. Jin, Z. Lou, and L. E. R. Petersson, "Total-and scattered-field decomposition technique for the finite-element time-domain method," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 35-41, Jan. 2006.
doi:10.1109/TAP.2005.861524

10. Yang, Q., B. Wei, L. Li, and D. Ge, "Implementation of corner-free truncation strategy in DGTD method," Waves Random Complex Media, Vol. 27, No. 2, 367-380, Apr. 2017.
doi:10.1080/17455030.2016.1249439

11. Alvarez, J., L. D. Angulo, A. R. Bretones, and S. G. Garcia, "3-D Discontinuous Galerk in time-domain method for anisotropic materials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1182-1185, 2012.
doi:10.1109/LAWP.2012.2220952

12. Bao, H., L. Kang, S. D. Campbell, and D. H. Werner, "PML implementation in a nonconforming mixed-element DGTD method for periodic structureanalysis," IEEE Trans. Antennas Propag., Vol. 67, No. 11, 6979-6988, Nov. 2019.
doi:10.1109/TAP.2019.2927663

13. Alvarez, J., L. D. Angulo, M. R. Cabello, A. R. Bretones, and S. G. Garcia, "Ananalysis of the leap-frog discontinuous Galerkin method for Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 2, 197-207, Feb. 2014.
doi:10.1109/TMTT.2013.2295775

14. Ren, Q., Q. Zhan, and Q. H. Liu, "An improved subdomain level nonconformal discontinuous galerkin time domain (DGTD) method for materials with full-tensor constitutive parameters," IEEE Photon. J., Vol. 9, No. 2, 1-13, Apr. 2017.
doi:10.1109/JPHOT.2017.2672644

15. Dosopoulos, S. and J.-F. Lee, "Interior penalty discontinuous galerkin finite element method for the time-dependent first order maxwell's equations," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 4085-4090, Dec. 2010.
doi:10.1109/TAP.2010.2078445

16. Li, P., Y. Shi, L. J. Jiang, and H. Bagci, "DGTD analysis of electromagnetic scattering from penetrable conductive objects with IBC," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5686-5697, Dec. 2015.
doi:10.1109/TAP.2015.2491963

17. Li, P., L. J. Jiang, and H. Bagci, "Discontinuous galerkin time-domain modeling of graphene nanoribbon incorporating the spatial dispersion effects," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3590-3598, July 2018.
doi:10.1109/TAP.2018.2826567

18. Yang, Q., B. Wei, L. Li, and D. Ge, "Simulation of electromagnetic waves in a magnetized cold plasma by the SO-DGTD method," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4151-4157, Aug. 2018.
doi:10.1109/TAP.2018.2835727

19. Wang, P., Y. Shi, Z. G. Ban, S. C. Zhu, Q. Yang, and L. Li, "Penalty fac tor threshold and time step bound estimations for discontinuous Galerkin time-domain method based on Helmholtz equation," IEEE Trans. Antennas Propag., Vol. 68, No. 11, 7494-7506, Nov. 2020.
doi:10.1109/TAP.2020.2998585

20. Chen, G., L. Zhao, W. Yu, S. Yan, K. Zhang, and J. Jin, "A general scheme for the discontinuous Galerkin time-domain modeling and s-parameter extraction of inhomogeneous waveports," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 4, 1701-1712, Apr. 2018.
doi:10.1109/TMTT.2017.2785800

21. Zhang, T., H. Bao, D. Ding, and R. Chen, "Interior penalty DGTD method for solving wave equation in dispersive media described with GDM model," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 6105-6110, Sept. 2021.
doi:10.1109/TAP.2021.3064222

22. Gedney, S. D., C. Luo, J. A. Roden, R. D. Crawford, B. Guernsey, J. A. Miller, and E. W. Lucas, "A discontinuous galerkin finite element time domain method with PML," IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

23. Li, K., T. Huang, L. Li, S. Lanteri, L. Xu, and B. Li, "A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 242-254, Jan. 2018.
doi:10.1109/TAP.2017.2768562

24. Sun, Q., R. Zhang, Q. Zhan, and Q. H. Lu, "3D implicit-explicit hybrid finite difference/spectral element/finite element time domain method without a Buffer zone," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5469-5476, Aug. 2019.
doi:10.1109/TAP.2019.2913740

25. Zhan, Q., Y. Wang, Y. Fang, Q. Ren, S. Yang, W. Y. Yin, and Q. H. Liu, "An adaptive high-order transient algorithm to solve large-scale anisotropic Maxwell's equations," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 2082-2092, Mar. 2022.
doi:10.1109/TAP.2021.3111639

26. Sankaran, K., C. Fumeaux, and R. Vahldieck, "Cell-centered finite-volume-based perfectly matched layer for time-domain Maxwell system," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1269-1276, Mar. 2006.
doi:10.1109/TMTT.2006.869704

27. Lee, J. F., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 430-442, Mar. 1997.
doi:10.1109/8.558658

28. Jin, J.-M., The Finite Element Method in Electromagnetics, 2nd Ed., Wiley, 2002.

29. Ren, Q., L. E. Tobon, Q. Sun, and Q. H. Liu, "A new 3-D nonspurious discontinuous galerkin spectral element time-domain (DG-SETD) method for Maxwell's equations," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2585-2594, Jun. 2015.
doi:10.1109/TAP.2015.2417891

30. Chen, J., L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, "Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures," IEEE Trans. Compon. Pack. Manuf. Technol., Vol. 1, No. 9, 1438-1446, Sept. 2011.
doi:10.1109/TCPMT.2011.2162726

31. Sun, Q., Q. Zhan, Q. Ren, and Q. H. Liu, "Wave equation-based implicit subdomain DGTD method for modeling of electrically small problems," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 4, 1111-1119, Apr. 2017.
doi:10.1109/TMTT.2016.2640312

32. Wen, P., Q. Ren, J. Chen, A. Chen, and Y. Zhang, "Improved memory-efficient subdomain level discontinuous galerkin time domain method for periodic/quasi-periodic structures," IEEE Trans. Antennas Propag., Vol. 68, No. 11, 7471-7479, Nov. 2020.
doi:10.1109/TAP.2020.2998215

33. Zhou, Y., L. Shi, N. Liu, C. Zhu, H. Liu, and Q. H. Liu, "Spectral element method and domain decomposition for low-frequency fubsurface EM simulation," IEEE Geosci. Remote. Sens. Lett., Vol. 13, No. 4, 550-554, Apr. 2016.
doi:10.1109/LGRS.2016.2524558

34. Zhan, Q., Q. Ren, Q. Sun, H. Chen, and Q. H. Liu, "Isotropic riemann solver for a nonconformal discontinuous galerkin pseudospectral time-domain algorithm," IEEE Trans. Geosci. Remote. Sens., Vol. 55, No. 3, 1254-1261, Mar. 2017.
doi:10.1109/TGRS.2016.2621124

35. Zhou, Y., L. Shi, N. Liu, C. Zhu, H. Liu, and Q. H. Liu, "Spectral element method and domain decomposition for low-frequency subsurface EM simulation," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 4, 550-554, Apr. 2016.
doi:10.1109/LGRS.2016.2524558

36. Shi, L., M. Zhuang, Y. Zhou, N. Liu, and Q. H. Liu, "Domain decomposition based on the spectral element method for frequency-domain computational elastodynamics," Sci. China Earth Sci., Vol. 64, 388-403, 2021.
doi:10.1007/s11430-020-9696-4

37. Shi, L., Y. Zhou, J. Wang, M. Zhuang, N. Liu, and Q. H. Liu, "Spectral element method for elastic and acoustic waves in frequency domain," J. Comput. Phys., Vol. 327, No. 15, 19-38, Dec. 2016.
doi:10.1016/j.jcp.2016.09.036

38. Zhan, Q., M. Zhuang, Y. Mao, and Q. H. Liu, "Unified Riemann solution for multi-physics coupling: Anisotropic poroelastic/elastic/fluid interfaces," Journal of Computational Physics, Vol. 402, No. 108961, 1-25, Feb. 2020.

39. Zeng, C., J. Xia, R. D. Miller, and G. P. Tsoflias, "Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with rayleigh waves," Geophys., Vol. 76, No. 3, T43-T52, May 2011.
doi:10.1190/1.3560019

40. Meza-Fajardo, K. C. and A. S. Papageorgiou, "On the stability of a non-convolutional perfectly matched layer for isotropic elastic media," Soil Dyn. Earthq. Eng., Vol. 30, No. 3, 68-81, 2010.
doi:10.1016/j.soildyn.2009.09.002

41. Zhan, Q., Y. Fang, M. Zhuang, M. Yuan, and Q. H. Liu, "Stabilized DG-PSTD method with nonconformal meshes for electromagnetic waves," IEEE Trans. Antennas Propag., Vol. 68, No. 6, 4714-4726, Jun. 2020.
doi:10.1109/TAP.2020.2970036