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Abstract—This study presents an effective solution on the basis of Discontinuous-Galerkin Time-
Domain (DGTD) scheme for the injection of elliptically polarized plane wave through total-
field/scattered-field (TF/SF) boundary. Generally, the elliptically polarized wave can be resolved into
two linearly polarized waves in phase quadrature with the polarization planes at right angles to each
other, but the proposed methodology is focused to utilize the principle of wave field formation to
induce left-handed or right-handed elliptically polarized waves by regulating the phase and amplitude
of the incident waves. The outcome of the proposed technique is achieved by deriving the EB-scheme
equations and employing the explicit fourth order Runge-Kutta (RK4) time integration scheme in the
DGTD methodology. An anisotropic Riemann solver and non-conformal mesh schemes are introduced
for domain decomposition to allow efficient spatial discretization. Additionally, the proposed work is
extended from single frequency to broadband elliptical polarized plane wave injection in the DGTD
method, and the significance of this study is observed in the results. The experimental outcomes
reveal that the proposed method is consistent with the analytical solution in free space and expected
to provide efficient numerical solutions for analyzing scattering characteristics generated by various
elliptically polarized waves.

1. INTRODUCTION

The polarization of electromagnetic wave refers the nature of its orientation and the change in amplitude
of electromagnetic field intensity with time. In information detection systems such as remote sensing
and radar target recognition, the polarization of scattered wave can also provide additional information
besides amplitude and phase information. Common engineering applications such as weather radar,
altitude radar, and interception radar of detection flight vehicle usually use horizontal polar wave
whereas sea navigation radar and ground/sea search radar on aircraft mostly use vertical polarized wave.
In recent years, it has been observed that circular polarization wave can suppress the interference of rain
and fog, resist multi-path reflection, and have the advantages of better mobility. It has been widely used
in various application including satellite communication, radar technologies, mobile communication, and
various other wireless communication protocols. However, the research on the technique of generating
broadband circularly polarized plane waves is relatively less focused in numerical simulations. In
electromagnetic simulation, the total-field/scattered-field (TF/SF) technique is the most conventional
and available approach to mitigate the challenge of scattering by introducing linearly polarized plane
waves [1, 2]. According to the discontinuity technique and the equivalence principle of the Maxwell’s
equations, the calculated region can be classified into the total field region and scattering field region.
The total field is composed of both incident field and scattering field while the scattering field only
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retains scattering field. Therefore, this method is very feasible if only the scattering characteristics of
the target are desired such as calculating the radar scattering cross section (RCS) of the target. By
using the equivalence principle, the incident field of the total fields is susceptible to the interface between
the total field and scattering field that is generally called the Huygens’ plane or the tangential field on
the connecting boundary. Thus, a three-dimensional (3-D) volume source problem can be transformed
into a two-dimensional (2-D) surface source problem.

To efficiently implement the TF/SF technique in the finite difference time domain (FDTD) method,
1D incident field array (IFA) method is proposed in [2]. In this method, plane waves are first simulated
on a one-dimensional grid, and then the incident field of the field points around the connecting boundary
is gradually obtained by interpolation and projection over time to introduce plane waves into the total
field region. A study in [3] provides a framework for a perfect TF/SF boundary for pulsed plane waves
that do not propagate in a grid-aligned fashion, and it claimed to be more accurate than previously
proposed 1-D auxiliary schemes. Similarly, a research was presented in [4] that introduced a new
staggered field design and formulation for the 1-D propagator of the TF/SF source implementation in
FDTD scattering simulation. A research in [5] presented the optimized analytic field propagator (O-
AFP) method for plane wave injection in the FDTD simulations. The proposed approach has addressed
the accuracy and memory storage issues faced by the existing TF/SF formulation. In [6], an FDTD
discrete plane wave (FDTD-DPW) technique is proposed for the generation of plane waves in the
TF/SF formulation of the FDTD method. Correspondingly, a study in [7] proposed a new generalized
total-field/scattered-field (G-TF/SF) formulation to model an infinite material scattering illuminated
by an arbitrarily oriented plane wave within a compact FDTD grid. In [8], a plane-wave injector
(TF/SF boundary) for a general layered medium was presented. The proposed work in [9] described
a new finite-element time-domain (FETD) volumetric plane-wave excitation method for use with the
total-and-scattered-field decomposition (TSFD). This method provides an alternative to the traditional
Huygens’ surface approaches commonly used to impress the incident field into the total-field region.

On the other hand, the Discontinuous-Galerkin Time-Domain (DGTD) method [10–25] to estimate
the mutual characteristics of the finite volume time domain (FVTD) method [26] and the FETD
method [27, 28] have many advantages in dealing with complex and fine structure with high accuracy.
As an extension of the isotropic DGTD methods [29, 30], the recently emerging anisotropic subdomain
level DGTD method exhibits more advantages [31, 32] including non-conformal mesh that can alleviate
meshing difficulties for large scale problems, and EB-scheme that is more efficient than the EH-scheme.
In the subdomain level of DGTD method, the different-structured elements can be used to classify the
calculation of domain into non-overlapping elements and the adjacent elements. It can be discretized by
employing non-conformal meshes or interpolating by basic functions of different orders to attain high
efficiency and accuracy. The anisotropic numerical flux is introduced to exchange energy instead of
satisfying the condition of tangential continuity between one element and its adjacent elements. The
algorithm is quasi explicit in space and only needs to inverse multiple matrices whose dimensions are
the numbers of basic functions in the elements.

In this work, we presents an analytic solution for the injection of elliptically polarized plane wave
via TF/SF boundary and employs the electric field intensity E and magnetic flux density B to solve the
Maxwell’s equations. To achieve this objective, the proposed method utilizes the principle of wave field
formation to generate left-handed or right-handed elliptically polarized waves by regulating the phase
and amplitude of the incident waves. Particularly, the study is focused to derive the EB-scheme based
analytic solutions of plane waves, and explicit fourth order Runge-Kutta (RK4) time integration scheme
is utilized in the subdomain level of DGTD method. The anisotropic Riemann solver and non-conformal
mesh are introduced for domain decomposition to allow efficient spatial discretization. Furthermore,
we extend this method from single frequency to broadband elliptically polarized plane wave injection
in the DGTD method.

2. METHODOLOGY

2.1. EB-Scheme Based Analytic Solutions of Plane Waves

To introduce the plane wave into DGTD algorithm via TF/SF boundary, we derive the solution of the
plane wave in the inhomogeneous medium in this section. The EB-scheme Maxwell’s equations can be
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expressed as

∇× ¯̄µ−1 · ∇ ×E− ω2 ¯̄ε ·E = 0 (1)

∇× ¯̄ε−1 · ∇ ×
(
¯̄µ−1B

)
− ω2B = 0 (2)

where E and B represent the electric field intensity and magnetic flux density, respectively. ¯̄ε and ¯̄µ
are permittivity and permeability of the medium, respectively, and ω denotes the angular frequency.
Assuming that k is the vector wave number in the propagation direction of the plane wave, the expression
of electric field and magnetic flux density can be written as

E = E0e
ik·r (3)

B = B0e
ik·r (4)

Substitute (3) and (4) into (1) and (2), respectively, to obtain

k× ¯̄µ−1 · k×E0 + ω2 ¯̄ε ·E0 = 0 (5)

k× ¯̄ε−1 · k× ¯̄µ−1B0 + ω2 ·B0 = 0 (6)

Let’s take E as an example, and k×E can be expressed as K̃ ·E0 , where

K̃ =

[
0 −kz ky
kz 0 −kx
−ky kx 0

]
(7)

Each Cartesian component of the above formula can be represented by a directional cosine, thus

K̃ (θ, φ)= |k|·

[
0 − cos θ sin θ sinφ

cos θ 0 − sin θ cosφ
− sin θ sinφ sin θ cosφ 0

]
(8)

where |k| is the magnitude of vector k. On the top of that, (5) can be written as[
|k|2 · F̃ (θ, φ) + ω2 · ¯̄I

]
·D0 = 0 (9)

where
F̃ (θ, φ) = |k|−2 K̃ (θ, φ) · ¯̄µ−1 · K̃ (θ, φ) · ¯̄ε−1,D0 = ¯̄ε ·E0 (10)

where ¯̄I denotes the unitary matrix, and F̃ (θ, φ) is a function of angles and electrical tensors of the

medium. Thus, for a plane wave propagating in a certain direction, F̃ (θ, φ) is just a constant matrix.
As we can see, Equation (9) corresponds to an eigenvalue problem, where ω2/k2 is the eigenvalue,

and D0 is the eigenvector. Based on the condition ∇ ·D = 0, we have k ·D = 0, thus, only two of the
three components of the electric flux density D are independent. This means that Equation (9) contains
two independent equations; therefore, (9) only has two eigenvalues and eigenvectors. Then, the general
solution of Equation (1) can be expressed as

E = a1e1e
ik1·r + a2e2e

ik2·r =

n∑
i=1

ajeje
ikj ·r (11)

where a1 and a2 are the magnitudes of the electric field; e1 and e2 are two linearly independent vectors.
Since vectors e1, e2, and k are orthogonal to each other, (11) can be written as

E = a1(k× η)eik·r + a2(k× k× η)eik·r (12)

where η is an arbitrary direction vector. If η points in the z -direction, for example, the two wave
components in (12) correspond to the transverse electric (TE) wave and transverse magnetic (TM)
wave, respectively.

As the magnetic flux density is orthogonal to the electric field, we have

B = b1(k× k× η)eik·r + b2(k× η)eik·r (13)

where b1 and b2 are the magnitudes of the magnetic flux density. By controlling the magnitudes, one
can separately realize plane waves in TE or TM mode. In addition, by controlling the phase difference
of the two orthogonal linearly polarized waves, one can implement circularly polarized plane waves. On
this principle, this research realizes the injection of elliptically polarized plane wave into DGTD method
by introducing the analytic solution of plane wave into the TF/SF boundary, as will be discussed later.
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2.2. Subdomain Level Based Non-Conformal DGTD

The first order Maxwell’s equations, involving electric field intensity E and magnetic flux density B,
can be expressed as

ε
∂E

∂t
+ σeE+ Js = ∇× µ−1B (14)

∂B

∂t
+ σmµ−1B+Ms = −∇×E (15)

∇ · εE = ρe (16)

∇ ·B = ρm (17)

where Js and Ms are the electric and magnetic current densities due to imposed sources, while σe and
σm are the material’s electric conductivity and magnetic conductivity, respectively.

The DG method is applied to domain decomposition in the proposed EB-scheme DGTD method.
After testing, the weak form of Maxwell’s equations for the local subdomain is∫

V
Φi ·

(
ε
∂Ei

∂t
+ σeE+ Ji

s

)
dV =

∫
V
∇×Φi · µ−1BidV +

∫
S
Φi · (n̂i × µ−1Bt)dS (18)∫

V
Ψi ·

(
∂Bi

∂t
+ σmµ−1Bi +Mi

s

)
dV = −

∫
V
∇×Ψi ·EidV −

∫
S
Ψi · (n̂i ×Et)dS (19)

where Φ and Ψ are the testing functions; (·)i and (·)t are the vectors for the ith subdomain field and
total field, respectively; and n̂i is the unit outward vector on the boundary. When the integration region
is in the volume, we have (·)t = (·)i. However, when the integration region is on the shared surfaces,
(·)t is from the contribution of both the ith subdomain and the jth subdomain.

To obtain the values of n̂i×Et and n̂i×µ−1Bt in the above equations, the Riemann Solver [33–38]
is employed

n̂i ×Et =
n̂i × (YiEi + YjEj)

Yi + Yj
− n̂i × n̂i × (µj

rBi − µi
rBj)

µi
rµ

j
r(Yi + Yj)

(20)

n̂i × µ−1
r Bt =

n̂i × (µj
rZiBi + µi

rZjBj)

µi
rµ

j
r(Zi + Zj)

− n̂i × n̂i × (Ei −Ej)

Zi + Zj
(21)

where εir and µi
r are relative permittivity and permeability of the ith subdomain, respectively.

Zi =
√

µi
r/
√

εir and Yi = 1/Zi are the impedance and admittance, respectively. By assembling the
basis functions, the discrete matrix equations of subdomains can be obtained, and the linear system
can be solved by adopting the explicit RK4 time stepping scheme.

2.3. Elliptically Polarized Wave Injection via TF/SF Boundary

In this section, a non-conformal mesh based TF/SF technique is presented for the elliptically polarized
plane wave incidence at the physical region adjacent to the multiaxial perfectly matched layer (MPML)
truncation [39–41]. We use the scattered and total fields as the unknowns for the MPML and
physical regions, respectively, and the TF/SF interface is just the same as the interface between the
MPML and physical region. As shown in Fig. 1, every basis function has a control point, where
its value is maximal. Assume τTE,i = [eTE,i1, · · · , eTE,im, bTE,i1, · · · , bTE,in]

T or τTM,i = [eTE,i1,

· · ·, eTM,im, bTM,i1, · · · , bTM,in]
T are the unknown vectors for a physical subdomian with TE or

TM incident wave, respectively, while τTE,j = [eTE,j1, · · · , eTE,jk, bTE,j1, · · · , bTE,jl]
T or τTM,j =

[eTM,j1, · · · , eTM,jk, bTM,j1, · · · , bTM,jl]
T are the unknown vectors in its adjacent MPML subdomain

with TE or TM incident wave, respectively. e and b are the unknowns, and T stands for the transpose.
In addition, since the MPML region together with its interface uses the scattered field, incident plane
waves need to be added here to obtain the total field.

To achieve elliptically polarized waves, the incident wave is projected to the basis functions
in the jth subdomain via two orthogonal vectors and forms so-called ‘incident vector’ including
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Figure 1. Total-field/scattered-field (TF/SF) technique for a non-conformal mesh. Group 1
representing the physical region is composed of triangles, and Group 2 representing the MPML region
is composed of rectangles.

τTEinc,j = [eTEinc,j1, · · · , eTEinc,jk, bTEinc,j1, · · · , bTEinc,jl]
T and τTMinc,j = [eTMinc,j1, · · · , eTMinc,jk,

bTMinc,j1, · · · , bTMinc,jl]
T where eTEinc,p = ⟨ETEinc,Φj,p⟩, eTMinc,p = ⟨ETMinc,Φj,p⟩, bTEinc,p =

⟨BTEinc,Ψj,p⟩ and bTMinc,p = ⟨BTMinc,Ψj,p⟩. ETEinc and BTEinc represent the electric field intensity
and magnetic flux density in TE incident mode, respectively. ETMinc and BTMinc represent the electric
field intensity and magnetic flux density in TM incident mode, respectively. Φ and Ψ are the basis
functions for E and B, respectively.

Assuming that f(t) is the time function of the plane wave, li,p is the distance from the pth control
point in the ith subdomain to the wave front at the time t = 0, and c is the wave speed in this medium.
Thus, the time-varying illumination matrix can be defined as

Λi = diag
{
f
(
t− li,1

c

)
, · · · , f

(
t− li,m+n

c

)}
(22)

Let’s say η is pointing in the Cartesian z -axis, then k × η is corresponding to the horizontal
polarization direction, while k × k × η is corresponding to the vertical polarization direction. As
different illumination matrices need to be introduced in different polarization directions, (22) can be
further decomposed into

Λφ1,i = diag
{
fφ1

(
t− li,1

c

)
, · · · , fφ1

(
t− li,m+n

c

)}
(23)

Λφ2,i = diag
{
fφ2

(
t− li,1

c

)
, · · · , fφ2

(
t− li,m+n

c

)}
(24)

where fφ1 and fφ2 represent plane wave functions with different initial phases. Then, the local
subdomain system equations using TF/SF technique can be written as

Mi
dτTE,i

dt
= LiiτTE,i +

∑
j

LijτTE,j +Λφ1,i

∑
j

LijτTEinc,j (25)

Mi
dτTM,i

dt
= LiiτTM,i +

∑
j

LijτTM,j +Λφ2,i

∑
j

LijτTMinc,j (26)

where Mi is the mass matrices of the ith subdomain, and Lij is composed of damping matrices. As
different illumination matrices are introduced for the two incident vectors, the local subdomain system
equations need to solve the horizontal and vertical polarization electromagnetic wave, respectively, and
perform vector superposition to obtain the final elliptically polarized wave solution. Note that in (25)
and (26),

∑
j LijτTEinc,j and

∑
j LijτTMinc,j are calculated only once when the system matrices are

assembled, and we only need to generate a new set of Λφ1,i and Λφ2,i at each time step. As thus,
the spatial connection of the basis functions from different subdomains can be pre-stored, and it is
independent of the time function of the incident plane wave. Another advantage of this approach is
the multiple functionalities of the shared interface: it plays the roles of the TF/SF interface, Riemann
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solver interface, and non-conforming mesh connector. Finally, by controlling the amplitude and phase
of two orthogonal linearly polarized waves, one can realize the introduction of plane waves with different
polarization characteristics such as linear polarization, circular polarization, and elliptical polarization.

3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. Single-Frequency Circularly Polarized Plane Waves in Free Space

To verify the accuracy of the proposed algorithm, we first investigate the single-frequency circularly
polarized plane wave propagation problem. The computational domain is vacuum with a size of
(3×3×3)m, and the MPML is used for the truncation. The cell size is 0.5m with 3-order basis functions.
Thus, the PPW (points per wavelength) is more than 10 which is enough for this simulation. A plane
wave that utilizes a sine/cosine signal as excitation source is incident along the x+ direction, with
frequency of 155MHz. The red domain and green domain respectively represent the MPML and the
physical region, and the receiver is located in (0.2, 0, 0), as shown in Fig. 2.

Figure 2. Computational domain of free space with x+ direction incident wave. The red and green
domain represent the MPML and the physical region, respectively.

To generate left-handed or right-handed circularly polarized plane waves, we can set the phase
difference (±90◦) of the two orthogonal incident-field components. In this case, the left-handed circularly
polarized wave with wave vector k along the x+ direction was injected in the computational domain
by the vector superposition of two orthogonal fields: y-polarized plane wave incidents along the x+
direction with cosine signal as the excitation function; z -polarized plane wave incidents along the x+
direction with sinusoidal signal as the excitation function. The phase difference φy − φz = π/2. Using
the DGTD algorithm proposed in this work, we can obtain the electromagnetic field value at the receiver,
as illustrated in Fig. 3. Figs. 3(a)–3(b) represent y- and z -components of the electric field intensity at
the receiving point, respectively. It can be seen that the calculated results of the proposed method agree
well with the analytical solution. Figs. 3(c)–3(d) show the relative errors of electric field intensity and
magnetic flux density calculated by the proposed method, respectively. We can see that the relative
error is below −40 dB except for the high frequency pollution part. Note that, when the cosine signal
component is first added into the plane wave, the system responds jump from zero state to the maximum
value of cosine wave, giving rise to the so-called high-frequency pollution phenomenon. However, as the
simulation process tends to be stable, the DGTD solution shows good agreement with the reference.

In addition, along the propagation direction of wave vector, it can be seen that the vector of electric
field on the plane perpendicular to the propagation direction has circular polarization characteristics
of single-frequency signal, as shown in Fig. 4(a). Receiver I to Receiver VI represent the 3D electric
field vectors at six receivers (0, 0, 0)m, (0.1, 0, 0)m, (0.2, 0, 0)m, (0.3, 0, 0)m, (0.4, 0, 0)m, and
(0.5, 0, 0)m along the propagation direction, and we can see that circularly polarized waves generated
here conform to the left hand helix rule. On top of that, Fig. 4(b) shows the electric field vector in the
plane perpendicular to the propagation direction. We can see that the track of the electric field vector
is circular, which also verifies the circular polarization characteristics of this single-frequency signal.
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(a) (b)

(c) (d)

Figure 3. Comparison of left-handed circularly polarized waves obtained by the proposed method
and the analytical solution. (a) y-component of he electric field intensity at the receiving point. (b)
z -component of the electric field intensity. (c) Relative error of electric field intensity. (d) Relative error
of magnetic flux density.

(a) (b)

Figure 4. Implementation of left-handed circularly polarized wave. (a) 3D electric field vectors at six
receivers. (b) Electric field vectors in the plane perpendicular to the propagation direction.

Similarly, we can generate right-handed circularly polarized plane waves: z -polarized plane wave
incidents along the x+ direction with cosine signal as the excitation function, combining y-polarized
plane wave incidents along the x+ direction with sinusoidal signal as the excitation function, with these
two waves’ phase difference φy −φz = −π/2, and Figs. 5(a)–5(b) represent y- and z -components of the
electric field intensity at the receiving point, respectively. We can seen that the DGTD results agree
well with the analytical solution. Figs. 5(c)–5(d) show the relative errors of electric field intensity and
magnetic flux density calculated by the proposed method, respectively.

Furthermore, Fig. 6(a) exhibits the 3D electric field vectors at six receivers located along the
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(a) (b)

(c) (d)

Figure 5. Comparison of right-handed circularly polarized waves obtained by the proposed method
and the analytical solution. (a) y-component of the electric field intensity at the receiving point. (b)
z -component of the electric field intensity. (c) Relative error of electric field intensity. (d) Relative error
of magnetic flux density.

(a) (b)

Figure 6. Implementation of right-handed circularly polarized wave. (a) 3D electric field vectors at
six receivers. (b) Electric field vectors in the plane perpendicular to the propagation direction.

propagation direction, and it can be seen that circularly polarized waves generated here conform to
the right hand helix rule. On top of that, Fig. 6(b) demonstrates the electric field vector in the plane
perpendicular to the propagation direction. We can see that the track of the electric field vector is
circular, which also verifies the circular polarization characteristics of the incident wave.
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3.2. Broadband Circularly Polarized Plane Waves in Free Space

In this section, we further investigate the broadband circularly polarized plane wave propagation
problems. The computational domain is the same as previous example, and a plane wave is incident
along the x+ direction. To inject bandwidth circularly polarized waves, we use a sinusoidal/cosinoidal
modulated Gaussian waveform as an excitation signal with centre frequency of 155MHz. The degree of
freedom (DoF) in this model is 251286; the memory consumption is 2704M; the time consumption is
13.1 minutes; and the average relative error with the analytical solution is about −130 dB.

The left-handed broadband circularly polarized wave with wave vector k along the x+ direction was
generated by the vector superposition of two orthogonal fields: y-polarized plane wave with cosinoidal
modulated Gaussian waveform as the excitation function and z -polarized plane wave with sinusoidal
modulated Gaussian waveform as the excitation function. The phase difference φy − φz = π/2. The
electromagnetic fields at the receiver (0.2, 0, 0)m were calculated via the DGTD algorithm, as illustrated
in Fig. 7.

(a) (b)

(c) (d)

Figure 7. Comparison of left-handed broadband circularly polarized waves obtained by the proposed
method and the analytical solution. (a) y-component of the electric field intensity at the receiving point.
(b) z -component of the electric field intensity. (c) relative error of electric field intensity. (d) relative
error of magnetic flux density.

Figures 7(a)–7(b) represent y- and z -components of the electric field intensity, respectively. It can
be seen that the calculated results of the proposed method agree well with the references. Because
the modulated Gaussian signal was introduced, there is no high-frequency pollution phenomenon.
Figs. 7(c)–7(d) show the relative errors of electric field intensity and magnetic flux density calculated
by the proposed method, respectively. We can see that the relative error is below −60 dB indicating
the accuracy of this method.

In addition, along the propagation direction of wave vector, it can be seen that the electric-field
vectors on the plane perpendicular to the propagation direction have circular polarization characteristics
of broadband signals, as shown in Fig. 8(a). Receiver I to Receiver VI represent the 3D electric field
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(a) (b)

Figure 8. Implementation of left-handed broadband circularly polarized wave. (a) 3D electric field
vectors at six receivers. (b) Electric field vectors in the plane perpendicular to the propagation direction.

(a) (b)

(c) (d)

Figure 9. Comparison of right-handed broadband circularly polarized waves obtained by the proposed
method and the analytical solution. (a) y-component of the electric field intensity at the receiving point.
(b) z -component of the electric field intensity. (c) Relative error of electric field intensity. (d) Relative
error of magnetic flux density.

vectors at six receivers (0, 0, 0)m, (0.1, 0, 0)m, (0.2, 0, 0)m, (0.3, 0, 0)m, (0.4, 0, 0)m, and (0.5,
0, 0)m along the propagation direction, and we can see that the broadband circularly polarized waves
generated here conform to the left hand helix rule. Besides, Fig. 8(b) shows the electric field vectors in
the plane perpendicular to the propagation direction, which verifies the broadband circular polarization
characteristics.

Similarly, we can generate right-handed broadband circularly polarized plane waves, and Fig. 9
shows the comparison results and relative errors comparison. Fig. 10(a) exhibits the 3D electric field
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(a) (b)

Figure 10. Implementation of right-handed broadband circularly polarized wave. (a) 3D electric field
vectors at six receivers. (b) Electric field vectors in the plane perpendicular to the propagation direction.

vectors at six receivers located along the propagation direction, and it can be seen that broadband
circularly polarized waves generated here conform to the right hand helix rule. Finally, Fig. 10(b)
demonstrates the electric field vectors in the plane perpendicular to the propagation direction, which
verifies the broadband circular polarization characteristics of the incident wave.

3.3. Superposition of Two Broadband Circularly Polarized Waves

To demonstrate the vector superposition relationship of two circularly polarized waves, we perform linear
superposition of broadband left-handed and right-handed polarized waves at the above six receivers.
Fig. 11(a) shows the 3D electric field vectors generated by the superposition, and we can see that the
resultant field still has the characteristics of Gaussian signal. Meanwhile, the waveform also shows the
characteristics of linear polarization, as we can see in Fig. 11(b), which is a view in the polarization
plane. As we know, linearly polarized waves can be decomposed into two circularly polarized waves with
opposite rotation with 90◦ phase difference. Meanwhile, circular polarization can also be synthesized
by linear superposition of orthogonal linearly polarized waves with 90◦ phase difference.

(a) (b)

Figure 11. Vector superposition of two opposite rotation circularly polarized waves. (a) 3D electric
field vectors at six receivers. (b) Electric field vectors in the polarization plane.

3.4. NASA Almond Illuminated by Elliptically Polarized Waves

Finally, we investigate scattering properties of a NASA Almond with size length (1.262×0.488×0.1626)m
embedded in the above computational domain, as illustrated in Fig. 12. Tetrahedral meshes are
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Figure 12. Computational domain for the investigation on scattering characteristics of a NASA Almond
with different incident waves. The red and green domain represent the MPML and the physical region,
respectively.

employed to construct the Almond and the physical region, while the hexahedral meshes are used
to build the MPML region. The tetrahedral cell size is about 0.2m with 2-order basis functions. Thus,
the PPW in vacuum is about 20. Plane waves are injected into the DGTD method via the TF/SF
boundary. The broadband elliptically polarized plane waves are incident along the x+ direction with
centre frequency of 155MHz, and the receiver is located at (−0.2, 0.2, −0.2)m.

Utilizing DGTD method, we investigated the scattering field distribution of the Almond illuminated
by different incident waves: TE mode with modulated Gaussian waveform, TM mode with modulated
Gaussian waveform, and elliptically polarized waves.

Figure 13 shows the electric field components on the receiver illuminated by the broadband left-
handed elliptically polarized waves and the corresponding TE and TM incident waves, i.e., this left-
handed elliptically polarized waves can be decomposed into these two components (TE component with
amplitude 1V/m and TM component with amplitude 0.7071V/m). Similarly, Fig. 14 shows the electric
field components illuminated by the right-handed elliptically polarized waves and the corresponding TE
and TM incident waves. Note that the left-handed TE (or TM) wave is not the same as the right-
handed TE (or TM) wave, as the initial phases are different. Numerical experiments demonstrate that
the scattering fields of the anomaly illuminated by different polarization waves show great differences
as expected. These polarization waves in the scattered wave contains rich characteristic information
of the target’s appearance structure, which may greatly improve the ability of target recognition and
detection.

(a) (b) (c)

Figure 13. Electric field components illuminated by the TM, TE incident waves and left-handed
elliptically polarized waves (a) x -component of the electric field. (b) y-component of the electric field.
(b) z-component of the electric field.
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(a) (b) (c)

Figure 14. Electric field components illuminated by the TM, TE incident waves and right-handed
elliptically polarized waves (a) x -component of the electric field. (b) y-component of the electric field.
(b) z-component of the electric field.

4. CONCLUSION

This research investigated an efficient approach of analytical solution for elliptically polarized plane wave
injection using Discontinuous Galerkin Time-Domain (DGTD) algorithm through total-field/scattered-
field (TF/SF) boundary. The methodology is performed by employing the non-conformal DGTD
approach with a Riemann solver at the subdomain level. A detailed analysis is conducted on the
suggested approach of elliptically polarized wave injection implemented through the explicit fourth
order Runge-Kutta (RK4) time integration scheme, and several evaluating parameters are considered
as shown in results to validate the effectiveness. The experimental results and numerical outcomes
declare the significance of suggested approach, and it can definitely enhance the capability to estimate
the numerical solutions for the characteristics of elliptically polarized waves.
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