Vol. 110
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-24
Wavelet Denoising of Echo Signal of Unilateral Magnetic Resonance Sensor
By
Progress In Electromagnetics Research M, Vol. 110, 25-38, 2022
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) is generally used as the measurement sequence of unilateral NMR (UMR) sensors, and the NMR signals collected by the sequence are composed of a series of echo signals. In the traditional CPMG measurement signal, each echo peak value is first taken and then denoised, which would lead to the inaccuracy of the peak point taken, resulting in deviation. To ensure the measurement result more accurate, this paper proposes to employ wavelet technology to denoise the echo signal first, and then take the peak point to analyze the data. Firstly, a simplified model of the spin-echo signal without the influence of gradient magnetic field was established, and white noise was applied to a certain extent. Then, Signal to Noise Ratio (SNR) and Root Mean Square Error (RMSE) were used as evaluation indexes. The denoising effects under different wavelet bases and thresholds were compared. Finally, the Matlab simulation result showed that wavelet analysis had a good effect on the denoising of unilateral NMR spin echo signal.
Citation
Pan Guo, Chenjie Yang, Yunfeng Zhu, Jiamin Wu, and Zheng Xu, "Wavelet Denoising of Echo Signal of Unilateral Magnetic Resonance Sensor," Progress In Electromagnetics Research M, Vol. 110, 25-38, 2022.
doi:10.2528/PIERM22020801
References

1. Blumich, B., J. Perlo, and F. Casanova, "Mobile single-sided NMR," Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 52, 197-269, 2008.
doi:10.1016/j.pnmrs.2007.10.002

2. Goga, N. O., A. Pirnau, L. Szabo, et al. "Mobile NMR: Applications to materials and biomedicine," Journal of Optoelectronics and Advanced Materials, Vol. 8, No. 4, 1430, 2006.

3. Blümich, B., F. Casanova, J. Perlo, et al. "Advances of unilateral mobile NMR in nondestructive materials testing," Magnetic Resonance Imaging, Vol. 23, No. 2, 197-201, 2005.
doi:10.1016/j.mri.2004.11.058

4. Blümich, B., "Applications in biology and medicine," Single-Sided NMR, 187-202, Springer, Berlin, Heidelberg, 2011.

5. Xia, Y., Z. Xu, J. Huang, J. Lin, and D. Yu, "Unilateral mini NMR sensor used for assessing the aging status of the sheds of composite insulators," Progress In Electromagnetics Research M, Vol. 42, 145-152, 2015.
doi:10.2528/PIERM15040902

6. Xu, Z., L. Li, P. Guo, et al. "Portable unilateral NMR measuring system for assessing the aging status of silicon rubber insulators," Applied Magnetic Resonance, Vol. 50, No. 1, 277-291, 2019.
doi:10.1007/s00723-018-1061-7

7. Abragam, A., Principles of Nuclear Magnetism, Oxford University Press, 1983.

8. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115

9. Ross, M. M. B., G. R. Wilbur, P. F. de J. Cano Barrita, and B. J. Balcom, "A portable, submersible, MR sensor - The Proteus magnet," Journal of Magnetic Resonance, Vol. 326, 1-8, 2021.

10. Guoxing, X. and L. Liben, Principles of Nuclear Magnetic Resonance Imaging (in Chinese), Science Press, 2007.

11. Wang, F., L. Miao, S. Wang, et al. "Application of improved wavelet denoising method in GPS attitude determination," Journal of Astronautics, Vol. 29, No. 4, 1267-1271, 2008.

12. Gao, Z., L. Hua, H. Zheng, et al. "Physicochemical characteristics of fly ashes and situation & prospect of its utilization as resources," Journal of Capital Normal University, Vol. 24, No. 1, 50-54, 2003.

13. Mohan, J., V. Krishnaveni, and Y. Guo, "A survey on the magnetic resonance image denoising methods," Biomedical Signal Processing and Control, Vol. 9, 56-69, 2014.
doi:10.1016/j.bspc.2013.10.007

14. Gerig, G. and O. Kubler, "Nonlinear anisotropic filtering of MRI data," IEEE Transactions on Medical Imaging, Vol. 11, No. 2, 221-232, 1992.
doi:10.1109/42.141646

15. Krissian, K. and S. Aja-Fernandez, "Noise-driven anisotropic diffusion ltering of MRI," IEEE Transactions on Image Processing, Vol. 18, No. 10, 2265, A Publication of the IEEE Signal Processing Society, 2009.
doi:10.1109/TIP.2009.2025553

16. Pizurica, A., W. Philips, I. Lemahieu, and M. Acheroy, "A versatile wavelet domain noise filtration technique for medical imaging," IEEE Transactions on Medical Imaging, Vol. 22, 323-331, 2003.
doi:10.1109/TMI.2003.809588

17. Muresan, D. D. and T. W. Parks, "Adaptive principal components and image denoising," IEEE International Conference on Image Process, Vol. 1, 101-104, 2003.

18. Yaroslavsky, L. P., K. Egiazarian, and J. Astola, "Transform domain image restoration methods: Review, comparison and interpretation," Nonlinear Image Processing and Pattern Analysis XII, Vol. 4304, 155-169, 2000.

19. Awate, S. P. and R. T. Whitaker, "Nonparametric neighborhood statistics for MRI denoising," International Conference on Information Processing in Medical Imaging, Springer-Verlag, 2005.

20. Manjón, J. V., P. Coupé, A. Buades, D. Louis Collins, and M. Robles, "New methods for MRI denoising based on sparseness and self-similarity," Medical Image Analysis, Vol. 16, No. 1, 18-27, 2012.
doi:10.1016/j.media.2011.04.003

21. Zhang, K., W. Zuo, Y. Chen, et al. "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," IEEE Transactions on Image Processing, Vol. 26, No. 7, 3142-3155, 2016.
doi:10.1109/TIP.2017.2662206

22. Jiang, D., W. Dou, L. Vosters, et al. "Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network," Japanese Journal of Radiology, Vol. 36, 566-574, 2018.
doi:10.1007/s11604-018-0758-8

23. Gang, C., "Research on the application of MRI image denoising methods (in Chinese)," The Medical Forum, 2019.

24. Torrence, C. and G. P. Compo, "A practical guide to wavelet analysis," Bulletin of the American Meteorological Society, Vol. 79, No. 1, 61-78, 1998.
doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

25. Coifman, R. R., Y. Meyer, and V. Wickerhauser, "Wavelet analysis and signal processing," Wavelets and Their Applications, 1992.

26. Walnut, D. F., An Introduction to Wavelet Analysis, Springer Science & Business Media, 2002.

27. Mingcai, L., Wavelet Analysis and Its Applications, 1, Tsinghua University Press, 2005.

28. Pan, G., "Research on key technology and applications of portable and fully open magnetic resonance instrument,", Chongqing University, 2015.

29. Tang, L. W. and D. F. Tang, "Wavelet signal denoising technique based on matlab," Journal of Hunan University of Science & Technology, Vol. 29, No. 1, 85-87, 2014.

30. O'Reilly, T. and A. G. Webb, "In vivo T1 and T2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT," Magnetic Resonance in Medicine, Vol. 87, No. 2, 884-895, 2022.
doi:10.1002/mrm.29009