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Wavelet Denoising of Echo Signal of Unilateral Magnetic Resonance
Sensor

Pan Guo'’ *, Chenjie Yang!, Yunfeng Zhu?, Jiamin Wu® 4, and Zheng Xu?

Abstract—Carr-Purcell-Meiboom-Gill (CPMG) is generally used as the measurement sequence of
unilateral NMR (UMR) sensors, and the NMR signals collected by the sequence are composed of a
series of echo signals. In the traditional CPMG measurement signal, each echo peak value is first taken
and then denoised, which would lead to the inaccuracy of the peak point taken, resulting in deviation.
To ensure the measurement result more accurate, this paper proposes to employ wavelet technology to
denoise the echo signal first, and then take the peak point to analyze the data. Firstly, a simplified
model of the spin-echo signal without the influence of gradient magnetic field was established, and
white noise was applied to a certain extent. Then, Signal to Noise Ratio (SNR) and Root Mean Square
Error (RMSE) were used as evaluation indexes. The denoising effects under different wavelet bases and
thresholds were compared. Finally, the Matlab simulation result showed that wavelet analysis had a
good effect on the denoising of unilateral NMR spin echo signal.

1. INTRODUCTION

Unilateral NMR is derived from the inside-out NMR technique [1], in which a wave spectrometer is placed
in a good cavity to image the fluid surrounding the cavity. Similar devices are used for product quality
testing and medical diagnostics, among other things [2-6]. Although the technique has been proposed
for over 30 years, it was not until well logging companies began Zeeman splitting commercial research
into nonuniform field techniques, and NMR-MOUSE equipment was developed that the technique was
taken seriously by the NMR technology industry.

The raw data of a single-sided NMR measurement is a series of echo signals whose amplitude decays
with time measured by an RF coil under the action of a CPMG pulse sequence, which is differentiated
by analyzing the echo signals of different substances with different relaxation characteristics of hydrogen
protons [7]. The traditional method of analyzing the single-sided NMR signal is to first take the peak
points of the individual echo signals and to fit the signals consisting of the individual peak points to
a multi-exponential fit using the inverse Laplace transform [8]. Currently, due to various factors such
as magnetic field uniformity, coil sensitivity, and environmental noise, the actual measured unilateral
NMR spin-echo signals contain a large amount of noise [9,10], which requires noise reduction of the
signal before further analysis.

In the field of signal analysis, signal noise reduction is one of the important research topics [11, 12].
There are many types of research on denoising methods of magnetic resonance signals [13-22]. Gerig and
Kubler first proposed a multi-echo MRI image post-processing method based on AD filters [14] with
higher spatial and spectral dimensions and demonstrated effective noise reduction and sharpening.
Krissian and Aja-Fernandez proposed a new filtering method to remove Rician noise in MRI, namely
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matrix diffusion filters [15] to remove Rician noise. Pizurica et al. introduced wavelet-based filters that
are also effective in removing noise from MRI images, which were filtered in the transform domain [16].
Principal Component Analysis (PCA), proposed by Muresan and Parks [17], and the Discrete Cosine
Transform (DCT), proposed by Yaroslavsky et al. [18], have also been applied to the image noise
reduction field. An information-theoretic approach using non-parametric density estimation to describe
the neighborhood structure was proposed by Awate and Whitaker. The formulation can be easily
generalized to simultaneous noise reduction for multimodal MRI and exploits the relationship between
modes [19] to further improve performance. Manjén et al. exploit the sparsity and self-similarity of MR
images for 3D noise reduction [20]. Convolutional neural networks (CNNs) are widely used in image
restoration due to their strong discriminative power. Zhang et al. proposed a Denoising Convolutional
Neural Network, (DnCNN) [21], which uses residual learning and Batch Normalisation (BN) to speed
up the training process and improve denoising performance. Jiang et al. developed a Multi-Channel
DnCNN (MCDnCNN) [22] method with two training strategies to remove noise from MR images with
or without a specific noise level. The traditional signal denoising method uses Fourier transform to filter
to suppress the high-frequency noise. However, for the unilateral NMR signal, its frequency domain
characteristics are not obvious due to the influence of the complex phase and frequency distribution
of the signal. Meanwhile, the signal attenuation is fast and shows non-periodicity, so the effect of this
method is not obvious [23]. Wavelet Analysis (WA) is a branch of mathematics developed in the past
20 years, which is the result of the epoch-making development of Fourier analysis [24-27]. Since 1992,
the theory and method of wavelet analysis have been successfully applied to the fields of smoothing and
noise filtering, data compression, image processing, etc. of analytical chemical signals [28]. Compared
with other denoising methods mentioned above, the advantage of wavelet analysis is mainly due to
the following characteristics of wavelet transform: (1) Low entropy. The sparse distribution of wavelet
coefficients reduces the entropy of the transformed image; (2) Multi-resolution property. Due to the
multi-resolution method, the non-smooth characteristics of the signal can be very well portrayed; (3) De-
correlation. Because the wavelet transform can de-correlate the signal, and the noise has a tendency to
whiten after the transform, the wavelet domain is better than the time domain for noise removal; (4) Base
selection flexibility. Since the wavelet transform can be flexible in choosing the basis, it can also choose
multiple wavelets, wavelet packets, translational wavelets, etc. according to the signal characteristics and
denoising requirements, and for different occasions, different wavelet mother functions can be chosen.
Wavelet analysis has the above characteristics and is, therefore, suitable for the denoising of unilateral
NMR spin echo signals.

2. FUNDAMENTAL

2.1. Mathematical Model of Spin-Echo Signals

Nuclear magnetic resonance (NMR) is a physical process in which an atomic nucleus with a non-zero
magnetic moment undergoes Zeeman splitting of the spin energy level in the presence of an external
magnetic field and resonates to absorb radiofrequency radiation of a certain frequency. Unlike medical
imaging, unilateral MRI does not require spatial localization of the signal. Based on this principle, single-
sided MRI equipment generally consists of a main magnet, a radiofrequency coil, and a spectrometer [29].
The main magnet provides a uniform main magnetic field By, under the action of which all hydrogen
protons in the field point towards the same magnetic moment as By, while undergoing spin motion at
the same frequency. This frequency is called the Larmor frequency (where v is the spin-to-magnetic
ratio of the nucleus):

wo = vBo (1)

The application of an RF pulse to a system of protons in a uniform field causes resonant absorption
of the system, resulting in two effects: (D the protons jump from a lower to a higher energy level, and the
longitudinal magnetization decreases from My to M,; @) the incoming protons are no longer uniformly
distributed in the upper and lower cones but move at the same speed and in the same direction, i.e.,
in the same phase, resulting in transverse magnetization and transverse magnetization vector M.
Depending on the time and intensity of the applied RF pulse, the angle of 6 changes accordingly, and
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this relationship is expressed by the following equation:
0 =~vyB1T (2)

where Bj is the magnitude of the magnetic field in the RF pulse, and 7 is the pulse action time.
Depending on the 6 angle of the pulse excitation, the RF pulse can be divided into 90° pulses, 180°
pulses, and partially flipped pulses.

When the radio frequency pulse stops, two things happen accordingly: (i) protons of higher energy
levels jump to lower energy levels; (ii) protons appear out of phase with each other. These two processes
occur simultaneously but independently of each other. The first process is macroscopically manifested
by a gradual recovery of the longitudinal magnetization intensity vector from M, to My, and is known
as the longitudinal relaxation process. The speed of this process depends on the interaction between
the protons and their surroundings and can be expressed by the following equation [10]:

M. (8) = My (1- ™) (3)

where 77 is the longitudinal relaxation time, usually taken as the time required for My to recover
from 0 to 0.63My. The second process is the gradual dispersion and eventual uniform distribution
of protons from the same phase, which is macroscopically manifested by the decay of the transverse
magnetization intensity vector My, from a maximum Mgy max to zero, and is known as the transverse
relaxation process. This process depends on the proton spin-spin interaction but is susceptible to the
inhomogeneity of the external magnetic field, and when the external field is uniform, the decay process
is expressed as:

__t
Mwy (t) = szmaxe T2 (4)

where T is the transverse relaxation time, usually taken as the time required for M, to decay from
My max to 0.37Myymax- The transverse relaxation process and longitudinal relaxation process are
carried out independently. By detecting the change process of the transverse magnetization vector
and setting the pulse sequence reasonably, Ts-weighted detection, Ti-weighted detection and proton
density-weighted detection can be achieved. To simplify the analysis, we use the signal generated by
the spin-echo sequence (e.g., Figure 1) as the signal source for analysis and processing.
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Figure 1. Spin-echo sequence.

A 90° pulse is first applied to flip the magnetic moment, and the transverse magnetization vector
reaches a maximum. After the RF pulse stops, the nuclear magnetic moment is fed around the main
magnetic field at the Larmor frequency wyp, and the transverse magnetization vector decays in magnitude
Ts. Afterward, the nuclear magnetic moment flips 180° under the action of the 180° pulse, and the
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whole process is symmetrical, so that t;=ts, and the spin-echo signal is symmetrical to the left and
right. According to the above analysis, taking the middle position of the spin-echo signal as the time
origin, the spin-echo signal can be expressed as:

¢

Ti

S (t) — sz maxei * COS (wgt) (t < O) (5)
Mry max€ T2 * COS (th) (t > O)

where My, max depends on the proton density p of the substance to be detected. wy = 8.5 MHz in the
general environment of a single-sided magnet with a magnetic field strength of 0.2'T.

2.2. Basic Principles of Wavelet Noise Reduction

The wavelet transform is a mathematical analysis method developed in recent years [27,29] and is a
development of the Fourier transform. The mathematical model of a one-dimensional noise-bearing

signal is:
(&) =5(t)+n(t) (6)

where n(t) is a Gaussian white noise obeying N(0,02). The basic principle of signal denoising using
wavelets is that after wavelet decomposition, the coefficients with larger amplitudes contain important
information about the signal, while those coefficients that are uniformly distributed and smaller in
number and amplitude correspond to noise. Based on this principle, the signal can be reconstructed
by decomposing the signal into multiple layers of wavelets, obtaining the detailed and approximate
components, and processing the detailed coefficients according to a certain threshold.

The main steps of the whole denoising process are as follows:

1) Base Selection

Different wavelet bases have different properties and therefore have their specific trial environment,
and different wavelet bases have different noise reduction results on the signal. The main properties of
wavelet bases include tight branching, regularity, symmetry, completeness, and continuity. No wavelet
can satisfy all these properties at the same time, so finding a suitable wavelet base is the first step in
signal noise reduction.

2) Layer Selection

The number of wavelet decomposition layers is also one of the factors affecting the effectiveness
of wavelet noise reduction. The theoretical maximum number of decomposition layers is logs N. The
larger the number of decomposition layers is, the more obvious the difference is between the noise
characteristics and signal characteristics, i.e., the more obvious the noise reduction effect is, but at the
same time it will also cause an increase in the reconstruction error, i.e., the distortion increases. It is
also important to choose a reasonable number of decomposition layers.

3) Wavelet Decomposition

Wavelet decomposition is the core of the multi-resolution analysis. The commonly used
wavelet decomposition algorithm is the famous Mallat decomposition algorithm, where each layer of
decomposition yields two signals, approximate signal and detailed signal, and then the approximate
signal can be decomposed in the next layer.

4) Threshold Processing

Hard thresholding (HT): sets wavelet coefficients with absolute values less than a given threshold
to 0, while wavelet coefficients with absolute values greater than the threshold remain unchanged, i.e.:

;Jw Jw>T
“’—{0 w| < T (7)

Soft Thresholding (ST): sets wavelet coefficients with absolute values less than a given threshold to
zero, while all wavelet coefficients with absolute values greater than the threshold are subtracted from
the threshold, i.e.,
r_ ) osen(w) (jw| =T) |w| =T
w = { 0 lw| < T (8)

where w is the wavelet coefficient, w’ the thresholded wavelet coefficient, T' the threshold value, and
T>0.
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5) Wavelet Reconstruction

The thresholded detail signal and approximate signal generated by the decomposition are
reconstructed to obtain the denoised signal. To judge the noise reduction performance of the
reconstructed signal, we use the signal-to-noise ratio (SNR) and mean square error (RMSE) as evaluation
metrics. The SNR is defined as (Here we define the unit of SNR as dB, where the numerator represents
the effective power of the signal, and the denominator represents the effective power of the noise.):

N
25t

SNR=10lg | —=L (9)

The mean square error is defined as:

1

RMSE = |+ z; (fi — 8i)° (10)
1=

where 5; denotes the ith sample of the original signal; f; denotes the ¢th sample of the denoised signal;

and N is the total number of samples.

3. EXPERIMENTAL METHOD

Matlab was used to carry out the simulation experimental research, including the establishment of
the spin-echo signal simulation model, the construction of signal-to-noise ratio and mean square error
function, the use of different wavelet bases for noise reduction processing, and the use of different
thresholds for noise reduction processing.

3.1. Simulation Model of Spin-Echo Signals

This paper focuses on the effect of wavelet analysis on the noise processing of spin-echo signals, making
the following two assumptions for analytical convenience:

@D Assume wy = 100 Hz.
@ Assume Myymax = p-

These two assumptions reduce the computational effort while maintaining the basic characteristics of
the actual signal. According to Nyquist’s theorem, the sampling frequency ws > 2wy is taken here as
ws = 1/1024 for computational convenience.

Based on the above assumptions, we arbitrarily selected the composite signals from three tissues,
namely, cerebral white matter, cerebral grey matter, and cerebrospinal fluid, as the signal sources [30].
According to Eq. (5), the mathematical expression of the original signal is:

o () = Z Di * e?z cos (wot) (t<0) ()
Zp,- ke T2 % cos(wot) (t>0)

where p; (i = 1,2, 3) indicates the proton density of white matter, grey matter, and cerebrospinal fluid,
respectively, whose values are shown in Table 1; Ty; (i = 1,2, 3) indicates the lateral relaxation time of
white matter, grey matter, and cerebrospinal fluid, respectively, whose values are shown in Table 1.

The following noise is applied to the original signal. The signal noise is mainly realized in two
ways. One is the deviation n; from wg due to magnetic field inhomogeneity, and the other is the overall
signal noise due to various equipment and environmental factors £(¢). The mathematical expression for
a signal containing noise is then:

() = ZPi*eTE*cos[(wo—i—m)t]—i—e(t) (t <0) 1)
Zpi*eTzi *cos[(wo—l—ni)t]—i—g(t) (tZQ)
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Table 1. Relaxation times of common tissues.

Tissues T1 (ms) T5 (ms) Proton density (%)
0.2T 1.0T 15T
Cerebral white matter 390 620 778 76 10.6
Cerebral gray matter 490 810 998 91 10.6
Cerebrospinal fluid 1400 2500 3000 140 10.8

where n; is the white noise obeying N (5,1), and e(t) is the white noise with SNR = 2.
Based on the above analysis, we implemented the signal simulation on Matlab and obtained the
curves of the original signal and noise-laden signal as shown in Figure 2.
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Noisy signal
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Figure 2. Original signal and noisy signal.

According to Eq. (9) and Eq. (10), the SNR of the spin-echo simulation signal is calculated by
Matlab programming = 2.0806, RMSE = 5.6327.

3.2. Simulation Methods for Wavelet Noise Reduction

According to the analysis in Section 2.2, the quality of wavelet noise reduction depends on the choice
of wavelet basis, the choice of decomposition layers, and the choice of threshold. This paper conducts
comparative simulation experiments for these three aspects.

1. Different wavelet bases are used to perform different levels of noise reduction on the noise-
containing signal. With 1024 sampling points, the maximum number of decomposition layers is 10.
Here, we choose N = 3, 4, 5, 6 for comparison. For wavelet bases, we select the typical wavelet
bases haar, db4, db6, sym4, sym6, coif2, coif4, bior3.9, bior6.8, rbio3.7, rbio6.8 commonly used for
one-dimensional transforms. For the different levels and wavelet bases of decomposition, all detail
components are set to 0 for reconstruction to eliminate the effect of thresholding, and thus comparing
the values of SNR and RMSE for different wavelet bases and decomposition levels and analyzing them,
this process was implemented using Matlab’s wavelet function.

2. Noise reduction processing with different thresholds. For the data obtained from the previous
experiment, the best three wavelet bases and decomposition layers were selected for the noise reduction
process, comparing the noise reduction effects under soft and hard thresholds and different threshold
sizes. This process is implemented using Matlab’s wavelet menu function.
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4. RESULT ANALYSIS

4.1. Noise Reduction Effect of Different Wavelet Bases and Decomposition Layers

Based on the above analysis, the wavedec() and waverec() functions are used to implement a comparison
of the multi-layer decomposition of different wavelet bases. The simulation results are shown in Figure 3
to Figure 13.
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Figure 3. Noise reduction of haar wavelets.
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Figure 4. Noise reduction of db4 wavelets.

The signal-to-noise ratio and mean square error calculations for the various noise reduction
processing modes are shown in Table 2.

From the graph of the reconstructed signal and the SNR and RMSE data, it can be seen that, except
for db6, distortion occurs when N > 4, and with further 6-layer decomposition and reconstruction for
db6 wavelet noise reduction, serious distortion occurs; therefore, IV should not be taken as large. At the
same time, the noise reduction effect at N = 2 is not obvious; therefore, for this spin-echo simulation



32 Guo et al.

Original signal Noisy signal
0 T Ll v |
: H (! ! ! [
& i gl i x ST i
T L AR [ r i A
= e L =) 1 l : [ A :
i I i : : i
s e os 9 D7 02 03 04 BE s B4 @3 @z Of 0 01 05 09 D4 0§
2- Iayer denolslng slgnal 3- Iayer denoising slgnal
41 T A1
: T o : |
mn n Bl |
I
ol et ..,E“u..j‘.'ﬁj 1\." r | \ .- J‘hdp'w,,.* SRR 0Lty 3 s
| SR (LB i' w0} _i
b T .1..= 1.' i 1 AT A7 05 nd ns He a9z @2 a1 1 [E] 1-' R
4-layer denolsing signal 5-layer denoising signal
Eil o -
|
m i bl P el 1
L T R H
- Ty \”l L . [ e e T _." I A I! 1t 1 ‘r T iam o]
e 1| L oot b T o = & L0 ---'-IZI-a -{
A5 a7 = 17 @ C 03 o0& 08§ A5 51 2 0z 4 g 41 a a I
Figure 5. Noise reduction of db6 wavelet.
Original signal Nuismr signal
0 T T T T T &
al I||I e : 0 }
[ fromimesr AL |-|-,I A N o
11 )
o W B 30
“—;ﬁ £a {43 a:z 'II ) '.II oz o3 04 os .a;IF a4 a3 az
2- Iayar danolsmg 5|gnal 3 Iayar danmsmg 5|gl1al
o a
. ] - ; . “rl ; - x :
erm"n“F\*-"“-'d.ﬂM'v'E'\.’“"L- AR L \w‘*fﬂt‘h%«» ST L o !
ot : kl Pl ] ;
L}.S 04 43 Q2 40t It JI 0 B3 ©4 06 "‘fl 44 43 42 @ o D1 D2 03 0f Ac
4-layer denoising signal 5-layer denocising signal
€ v ¥ ¥ v T T a0 v T T T ¥ T
i) B f] o :
o] - SEPTELEE ] = - f’ 1 s
ol m :
: Bs @4 o3 0z @1 0 01 Dz 03 0f B

e ad a3 0 cl.' r '.u; 65 0T o
Figure 6. Noise reduction of sym4 wavelet db6.

Table 2. Evaluation of the noise reduction effect with different wavelet bases and decomposition layers.

N=2 N=3 N =4 N=5

SNR RMSE SNR RMSE SNR RMSE SNR RMSE

haar  7.1171 3.1534 8.3999 2.7211 6.0999 3.5461 —0.0490 7.1977
db4 7.3349 3.0761 10.148 2.2252 11.149 1.9828 0.3036  6.9113
db6 7.5584 29980 10.128 2.2301 11.873 1.8242 12.609 1.6761
sym4d  7.3925 3.0558 10.119 2.2325 11.368 1.9335 3.8977  4.5694
sym6  7.5095 3.0149 10.132 2.229 11.927 1.8130 3.6998  4.6747
coif2  7.3307 3.0776 10.137 2.2279 11.345 1.9386  3.6050  4.7260
coif4  3.3532 3.0696 10.180 2.2168 11.992 1.7994 0.1569  7.0290
biord.9 7.3718 3.0630 10.081 2.2422 11.980 1.8020 3.7071  4.6708
bior6.8 7.5548 2.9992 10.102 2.2370 11.929 1.8125 2.5303 5.3484
rbio3.7 7.3956 3.0546 9.9841 2.2675 10.821 2.0591 1.844 5.7882
rbio6.8 7.5335 3.0064 10.144 2.2260 11.887 1.8214  2.4424  5.4028

Base
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signal, the number of decomposition layers N is chosen as 3 or 4. Considering that the subsequent
spin-echo signal processing is more concerned with the amplitude decay characteristics, N should be
taken as 3 to reduce the distortion.

In addition, comparing the decomposition of different wavelet bases, we can see that the haar
wavelet has the worst noise reduction effect, and the reconstructed signal is discontinuous, which is
caused by the discontinuity of the haar wavelet itself. The wavelets other than the haar wavelet have
good continuity and good similarity to the spin-echo signal so that the signal-to-noise ratio can reach
around 10 at N = 3.

Among them, the dbN wavelet system, coifN wavelet system, and symN wavelet system are wavelets
constructed by Daubechies. dbN wavelets have good continuity but are not symmetric; symN wavelets
are an improvement of dbN wavelets; coifN wavelets have better symmetry than dbN. In terms of support
length, coifN has the same support length as db3N and sym3N; in terms of the number of vanishing

moments, coifN has the same number of vanishing moments as sym2N [29].

‘While bior and rbio are

double orthogonal spline wavelets and inverse double orthogonal spline wavelets respectively, compared
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Figure 10. Noise reduction of bior3.9 wavelets.

to Daubechies and haar wavelets, the spline wavelets are not only continuous but also symmetric and
have good properties.

4.2. Noise Reduction with Different Thresholds

The previous subsection compares the noise reduction effects under different wavelet bases and
decomposition layers and concludes that the noise reduction effect is most suitable for N = 3. In
the following section, a more representative sample wavelet bior3.9 and an approximate symmetric
wavelet coif4 constructed by Daubechies are selected for comparative analysis of thresholding, which is
implemented here using Matlab’s wavelet tools menu wavemenu.

It should be noted that since the threshold ranges obtained using different wavelet base
decompositions are different, the threshold processing is uniformly expressed in percentage form for
the sake of comparative analysis, and the threshold T is the percentage of the set threshold in the
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Figure 11. Noise reduction of bior6.8 wavelets.
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Figure 12. Noise reduction of rbio3.7 wavelets.
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Table 3. Comparison of noise reduction thresholds using coif4 wavelet bases (N = 3).

Method T=15% T =30% T =50% T =170% T =85%
SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE
Soft 3.839 5405 8256 2.767v 9.783 2321 10.34 2176 1049 2.138
Hard 2312 5485 3.580 4.740 5.793 3.674 7.767 2927 9.447 2.412

maximum value of wavelet coefficients at that level.
Table 3 gives the results of the threshold treatment using coif4 for the N = 3 condition.
Table 4 gives the results of the threshold treatment using bior3.9 for the N = 3 condition.
The soft thresholding method is more effective than the hard thresholding method in terms of noise

reduction, and its noise reduction quality improves as the threshold increases, but as can be seen from
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Figure 14. Bior3.9 soft threshold denoising process (N =3, T' = 0.9).

the data in Table 2 (T" = 100%), its optimal threshold value occurs between 85% and 100%, not the
larger the better.

Comparing the noise reduction effects of bior3.9 wavelet and coif4 wavelet under the same threshold,
it is found that the noise reduction effect of the spline wavelet is better, which is caused by the excellent
nature of the spline wavelet in terms of symmetry and continuity, and therefore, the spline wavelet is
widely used. Figure 14 gives the whole noise reduction process when bior3.9 is chosen as the wavelet
base, N taken as 3, and T taken as 90% soft threshold. At this point SNR = 10.5749, RMSE = 2.1184.
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Table 4. Comparison of noise reduction thresholds using bior3.9 wavelet bases (N = 3).

T =15% T =30% T =50% T =170% T =385%
SNR RMSE SNR RMSE SNR RMSE SNR RMSE SNR RMSE
Soft 5.320 3.879 7988 2853 9.911 2.287 1048 2.141 10.57 2121
Hard 2315 5483 3.500 4.784 5.713 3.707 8308 2.750 10.02  2.257

Method

5. CONCLUSION

In this paper, by building a simulation model of the spin-echo signal measured by a single-sided NMR
sensor, wavelet analysis is used to realize the noise reduction processing of the spin-echo signal containing
noise, and the effects of wavelet basis, decomposition level, and threshold selection on the noise reduction
effect are discussed with the signal-to-noise ratio SNR and mean square error RMSE as evaluation
indexes respectively. The simulation results show that the introduction of wavelet noise reduction
technique into the processing of single-sided NMR measurement signals can greatly improve the signal
quality, which is of great significance to improve the later data analysis of single-sided NMR.

The use of wavelet analysis for signal denoising is a complex process. In this paper, a simplified
spin-echo signal is used as a simulation signal to explore and demonstrate the feasibility of wavelet
analysis for denoising single-sided NMR spin-echo signals. For the real one-sided NMR spin-echo signal,
more and more complicated problems will be involved, and the optimal noise reduction solution for
the one-sided NMR spin-echo signal can only be found by considering the characteristics of the wavelet
basis and the signal characteristics, as well as the influence of the number of decomposition layers and
the choice of the threshold value.
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