Vol. 173
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-03-09
Massively Parallel Multilevel Fast Multipole Algorithm for Extremely Large-Scale Electromagnetic Simulations: a Review
By
Progress In Electromagnetics Research, Vol. 173, 37-52, 2022
Abstract
Since the first working multilevel fast multipole algorithm (MLFMA) for electromagnetic simulations was proposed by Chew's group in 1995, this algorithm has been recognized as one of the most powerful tools for numerical solutions of extremely large electromagnetic problems with complex geometries. It has been parallelized with different strategies to explore the computing power of supercomputers, increasing the size of solvable problems from millions to tens of billions of unknowns, thereby addressing the crucial demand arising from practical applications in a sense. This paper provides a comprehensive review of state-of-the-art parallel approaches of the MLFMA, especially on a newly proposed ternary parallelization scheme and its acceleration on graphics processing unit (GPU) clusters. We discuss and numerically study the advantages of the ternary parallelization scheme and demonstrate its flexibility and efficiency.
Citation
Wei-Jia He, Xiao-Wei Huang, Ming-Lin Yang, and Xin-Qing Sheng, "Massively Parallel Multilevel Fast Multipole Algorithm for Extremely Large-Scale Electromagnetic Simulations: a Review," Progress In Electromagnetics Research, Vol. 173, 37-52, 2022.
doi:10.2528/PIER22011202
References

1. Mautz, J. R. and R. F. Harrington, "H-field, E-field, and combined field solutions for conducting bodies of revolution," Aeu., Vol. 32, No. 4, 157-164, Apr. 1978.

2. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:The server didn't respond in time.

3. Sarkar, T., E. Arvas, and S. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propag., Vol. 34, No. 5, 635-640, May 1986.
doi:

4. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propag. Mag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

5. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microw. Opt. Tech. Lett., Vol. 10, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

6. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

7. Wu, F., Y. Zhang, Z. Z. Oo, and E. Li, "Parallel multilevel fast multipole method for solving large-scale problems," IEEE Antennas Propag. Mag., Vol. 47, No. 4, 110-118, Aug. 2005.
doi:10.1109/MAP.2005.1589896

8. Velamparainbil, S. V., J. E. Schutt-Aine, J. G. Nickel, J. M. Song, and W. C. Chew, "Solving large scale electromagnetic problems using a linux cluster and parallel MLFMA," IEEE International Symposium on Antennas and Propagation Digest, Vol. 1, 636-639, Jul. 1999.

9. Donepudi, K. C., J. M. Jin, S. Velamparambil, J. M. Song, and W. C. Chew, "A higher order parallelized multilevel fast multipole algorithm for 3-D scattering," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1069-1078, Jul. 2001.
doi:10.1109/8.933487

10. Velamparambil, S., W. C. Chew, and J. M. Song, "10 million unknowns: Is it that big?," IEEE Antennas Propag. Mag., Vol. 45, No. 2, 43-58, Apr. 2003.
doi:10.1109/MAP.2003.1203119

11. Velamparambil, S. and W. C. Chew, "Analysis and performance of a distributed memory multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2719-2727, Aug. 2005.
doi:10.1109/TAP.2005.851859

12. Gurel, L. and O. Ergul, "Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns," Electron. Lett., Vol. 43, No. 9, 499-500, Apr. 2007.
doi:10.1049/el:20070639

13. Waltz, C., K. Sertel, M. A. Carr, B. C. Usner, and J. L. Volakis, "Massively parallel fast multipole method solutions of large electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1810-1816, Jun. 2007.
doi:10.1109/TAP.2007.898511

14. Hu, J., Z. P. Nie, L. Lei, J. Hu, X. D. Gong, and H. P. Zhao, "Fast 3D EM scattering and radiation solvers based on MLFMA," J. Syst. Eng. Electron., Vol. 19, No. 2, 252-258, Apr. 2008.
doi:10.1016/S1004-4132(08)60075-4

15. Pan, X. M. and X. Q. Sheng, "A sophisticated parallel MLFMA for scattering by extremely large targets," IEEE Antennas Propag. Mag., Vol. 50, No. 3, 129-138, Jun. 2008.
doi:10.1109/MAP.2008.4563583

16. Ergul, O. and L. Gurel, "Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2335-2345, Aug. 2008.
doi:10.1109/TAP.2008.926757

17. Fostier, J. and F. Olyslager, "An asynchronous parallel MLFMA for scattering at multiple dielectric objects," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2346-2355, Aug. 2008.
doi:10.1109/TAP.2008.926787

18. Pan, X. M., W. C. Pi, M. L. Yang, Z. Peng, and X. Q. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2571-2574, May 2012.
doi:10.1109/TAP.2012.2189746

19. Fostier, J. and F. Olyslager, "Provably scalable parallel multilevel fast multipole algorithm," Electron. Lett., Vol. 44, No. 19, 1111-1113, Sep. 2008.
doi:10.1049/el:20081792

20. Fostier, J. and F. Olyslager, "Full-wave electromagnetic scattering at extremely large 2-D objects," Electron. Lett., Vol. 45, No. 5, 245-246, Feb. 2009.
doi:10.1049/el:20093122

21. Ergul, O. and L. Gurel, "Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics," Electron. Lett., Vol. 44, No. 6, 3-4, 2008.
doi:10.1049/el:20082282

22. Ergul, O. and L. Gurel, "A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1740-1750, Jun. 2009.
doi:10.1109/TAP.2009.2019913

23. Ergul, O. and L. Gurel, "Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 18-27, Feb. 2011.
doi:10.1109/MAP.2011.5773562

24. Ergul, O. and L. Gurel, "Hierarchical parallelization of the multilevel fast multipole algorithm (MLFMA)," Proc. IEEE, Vol. 101, No. 2, 332-341, 2013.
doi:10.1109/JPROC.2012.2204429

25. Michiels, B., J. Fostier, I. Bogaert, and D. D. Zutter, "Weak scalability analysis of the distributed-memory parallel MLFMA," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5567-5574, Nov. 2013.
doi:10.1109/TAP.2013.2278078

26. Michiels, B., I. Bogaert, J. Fostier, and D. De Zutter, "A well-scaling parallel algorithm for the computation of the translation operator in the MLFMA," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2679-2687, 2014.
doi:10.1109/TAP.2014.2307338

27. Michiels, B., J. Fostier, I. Bogaert, and D. D. Zutter, "Full-wave simulations of electromagnetic scattering problems with billions of unknowns," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 796-798, Feb. 2015.
doi:10.1109/TAP.2014.2380438

28. Melapudi, V., B. Shanker, S. Seal, and S. Aluru, "A scalable parallel wideband MLFMA for efficient electromagnetic simulations on large scale clusters," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2565-2577, 2011.
doi:10.1109/TAP.2011.2152311

29. Hughey, S., H. M. Aktulga, M. Vikram, M. Lu, B. Shanker, and E. Michielssen, "Parallel wideband MLFMA for analysis of electrically large, non-uniform, multiscale structures," IEEE Trans. Antennas Propag., Vol. 67, No. 2, 1094-1107, 2018.
doi:10.1109/TAP.2018.2882621

30. Yang, M. L., B. Y. Wu, H. W. Gao, and X. Q. Sheng, "A ternary parallelization approach of MLFMA for solving electromagnetic scattering problems with over 10 billion unknowns," IEEE Trans. Antennas Propag., Vol. 67, No. 11, 6965-6978, 2019.
doi:10.1109/TAP.2019.2927660

31. Liu, R. Q., X. W. Huang, Y. L. Du, M. L. Yang, and X. Q. Sheng, "Massively parallel discontinuous galerkin surface integral equation method for solving large-scale electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 6122-6127, 2021.
doi:10.1109/TAP.2021.3078558

32. Huang, X. W., M. L. Yang, and X. Q. Sheng, "A simplified discontinuous Galerkin self-dual integral equation formulation for electromagnetic scattering from extremely large IBC objects," IEEE Trans. Antennas Propag., 2021, doi: 10.1109/TAP.2021.3137485.
doi:10.1109/TAP.2021.3078558

33. Taboada, J. M., L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mouriño, and A. Gomez, "High scalability FMM-FFT electromagnetic solver for supercomputer systems," IEEE Antennas Propag. Mag., Vol. 51, No. 6, 20-28, Dec. 2009.
doi:10.1109/MAP.2009.5433091

34. Araújo, M. G., J. Taboada, F. Obelleiro, J. M. Bértolo, L. Landesa, J. Rivero, and J. L. Rodríguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.
doi:10.2528/PIER09121007

35. Taboada, J., M. G. Araújo, J. M. Bértolo, L. Landesa, F. Obelleiro, and J. L. Rodríguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetic (Invited Paper)," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

36. Taboada, J. M., M. G. Araújo, F. Obelleiro, J. L. Rodríguez, and L. Landesa, "MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics," Proc. IEEE, Vol. 101, No. 2, 350-363, Feb. 2013.
doi:10.1109/JPROC.2012.2194269

37. Hansen, T. B., "Translation operator based on Gaussian beams for the fast multipole method in three dimensions," Wave Motion, Vol. 50, No. 5, 940-954, Jul. 2013.
doi:10.1016/j.wavemoti.2013.03.006

38. Hansen, T. B. and O. Borries, "Gaussian translation operator in a multilevel scheme," Radio Sci., Vol. 50, No. 8, 754-763, Aug. 2015.
doi:10.1002/2015RS005686

39. Eibert, T. F. and T. B. Hansen, "Propagating plane-wave fast multipole translation operators revisited - Standard, windowed, Gaussian beam," IEEE Trans. Antennas Propag., Vol. 69, No. 9, Sep. 2021.
doi:10.1109/TAP.2021.3061568

40. Cwikla, M., J. Aronsson, and V. Okhmatovski, "Low-frequency MLFMA on graphics processors," IEEE Antennas Wireless Propag. Lett., Vol. 9, 8-11, 2010.
doi:10.1109/LAWP.2010.2040571

41. Guan, J., Y. Su, and J. M. Jin, "An openMP-CUDA implementation of multilevel fast multipole algorithm for electromagnetic simulation on multi-GPU computing systems," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3607-3616, 2013.
doi:10.1109/TAP.2013.2258882

42. Tran, N. and O. Kilic, "Parallel implementations of multilevel fast multipole algorithm on graphical processing unit cluster for large-scale electromagnetics objects," Appl. Comput. Electromag. Soc. J., Vol. 1, No. 4, 145-148, 2016.

43. Phan, T., N. Tran, and O. Kilic, "Multi-level fast multipole algorithm for 3-D homogeneous dielectric objects using MPI-CUDA on GPU cluster," Appl. Comput. Electromag. Soc. J., Vol. 33, No. 3, 335-338, 2018.

44. Hesford, A. J. and W. C. Chew, "Fast inverse scattering solutions using the distorted Born iterative method and the multilevel fast multipole algorithm," Journal of the Acoustical Society of America, Vol. 128, No. 2, 679-690, 2010.
doi:10.1121/1.3458856

45. Roohani Ghehsareh, H., S. Kamal Etesami, and M. Hajisadeghi Esfahani, "Numerical investigation of electromagnetic scattering problems based on the compactly supported radial basis functions," Zeitschrift für Naturforschung A, Vol. 71, No. 8, 677-690, 2016.
doi:10.1515/zna-2016-0070