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Abstract—Since the first working multilevel fast multipole algorithm (MLFMA) for electromagnetic
simulations was proposed by Chew’s group in 1995, this algorithm has been recognized as one of
the most powerful tools for numerical solutions of extremely large electromagnetic problems with
complex geometries. It has been parallelized with different strategies to explore the computing power of
supercomputers, increasing the size of solvable problems from millions to tens of billions of unknowns,
thereby addressing the crucial demand arising from practical applications in a sense. This paper provides
a comprehensive review of state-of-the-art parallel approaches of the MLFMA, especially on a newly
proposed ternary parallelization scheme and its acceleration on graphics processing unit (GPU) clusters.
We discuss and numerically study the advantages of the ternary parallelization scheme and demonstrate
its flexibility and efficiency.

1. INTRODUCTION

The surface integral equation (SIE) method is popular for the computing of electromagnetic field
interactions with metallic or homogeneous dielectric materials [1, 2]. The final matrix equation system
arising from SIE using the method of moments (MoM) is dense, thereby severely limiting the solvable
problem size. To solve the MoM dense matrix equation system more efficiently, fast solvers have
been proposed [3–6]. The multilevel fast multipole algorithm (MLFMA), which was first successfully
introduced to the field of computational electromagnetics by Chew’s group in 1995 [5], is a powerful
tool for accelerating the iterative solution of the SIE. Since then, the MLFMA has gained broad interest
and has attracted wide attention worldwide, especially for solving electromagnetic problems with large
electrical sizes.

Although the computational complexity of the MLFMA is only O(N logN ), and it enables solution
of a large problem with millions of unknowns by using a single computer, real-life applications always
have higher demand. Even though the hardware technology of modern computers has been highly
strengthened in the past few decades, the computing power of a single computer is still far from satisfying
practical engineering demand. Therefore, the parallelization of the MLFMA to benefit from the present
supercomputer power is crucial. To this aim, many studies have contributed to MLFMA parallelization
on shared, distributed, and mixed-memory computers by using different partitioning strategies and
parallel programming models.

Efforts for the parallelization of the MLFMA were made soon after the method was proposed and
has continued for over two decades [7–36]. The parallelization of the MLFMA on distributed-memory
parallel computers is very challenging due to the complicated multilevel structure of the algorithm: the
number of boxes increases, while the number of plane waves in each box decreases from the current
level to the next lower level. The simple parallelization approach of the MLFMA partitions only boxes
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among processes [7]. The idea of a simple parallelization approach is very straightforward, but parallel
efficiency can be promised for a small number of processes only, as the number of boxes on the second
highest level MLFMA tree is no more than eight. Compared with the simple parallelization approach,
the development of a hybrid parallelization strategy provides a one-step forward larger parallelization
scale [8–18]. This strategy partitions only boxes at lower levels among processes and only planewaves
in a box among processes on higher levels. With the hybrid strategy, problems involving over 10 million
unknowns were solved for the first time with 126 processes [8]. Later, with optimization of the hybrid
strategy, a series of studies were proposed with increasing problem size solvability [9–18]. Gurel’s
group proposed a solution of problems with tens of millions of unknowns [12, 16]. At the same time,
a sophisticated parallel MLFMA was proposed by Sheng’s group to calculate electrically large objects
involving 130 million unknowns [15].

Even though other optimizations have been performed on the hybrid parallel strategy of the
MLFMA and improved its performance significantly [17], the parallel scale is still severely limited,
and the parallel efficiency drops fast. The reason is that in the hybrid strategy, the MLFMA levels
are partitioned among processes either only by boxes or only by planewaves in each box (along the
θ-direction). For generally 3D objects, when the process number is large, there are some levels
that fail to provide efficient workload partitioning just by boxes or by planewaves. In addition, to
switch box partitioning and planewave partitioning patterns on the intermediate level, global all-to-all
communications are required. The commonly used MPI library uses 32-bit pointers, which corresponds
to a maximum 2GB data limitation for all-to-all communication. Partitioning of messages not only
increases latencies but also is difficult and inefficient. Therefore, global all-to-all communication has
become another bottleneck, especially for large-scale problems. In [18], a hybrid MPI and OpenMP
parallel MLFMA matching with the architectures of popular mixed-memory supercomputers was
proposed, where the OpenMP multithread programming model was used to accelerate the pure MPI
parallel MLFMA. By using OpenMP, the load balance and scalability of the hybrid parallel MLFMA
was improved, and problems involving a billion unknowns were solved efficiently with over a thousand
CPU cores (including processes and threads). Although the use of OpenMP in accelerating MPI parallel
MLFMA allows the use of more CPU cores, the limitation of the hybrid approach caused by all-to-all
communications on the transition level remains unchanged.

The development of the hierarchical strategy is a significant progress in the parallelization of the
MLFMA. In the hierarchical parallelization approach of the MLFMA, both boxes and plane waves
in a box at each level are partitioned among MPI processes. The hierarchical strategy has been
applied successfully to 2D problems [19, 20] as well as general 3D objects with arbitrary shapes [21–24].
Since in the implementation of the hierarchical strategy, boxes and plane waves are bisected, the total
number of processes used is strictly limited to 2n. Using the hierarchical strategy, numerical solutions
of electromagnetic problems involving a maximum of 374million unknowns were obtained [23]. The
conventional hierarchical strategy partitions only plane waves among processes in the same group along
the θ-direction and may still suffer from load imbalance when a large number of processors are used.
An alternative strategy, namely, the blockwise hierarchical partitioning approach, was developed, where
partitioning of the plane waves in both θ and φ directions is performed [25]. This improved approach
has been proven to have high parallel efficiency and is especially suitable for computing with a very large
number of CPU cores at the price of a number of processes strictly limited to 4n. Using the blockwise
hierarchical partitioning approach, an electrically large electromagnetic scattering problem with as many
as 3 billion unknowns was solved, with 4096 processes, which was the largest number of unknowns and
the highest number of parallel processes ever reported at that time [27]. The limitation of the process
number in the hierarchical strategy results in substantial inconvenience in practical implementations.
An adaptive direction partition optimization of the hierarchical strategy was proposed for parallel
wideband MLFMA [28, 29] but may partly lose the important advantage of accelerating interprocess
communication in the hierarchical strategy.

To overcome the shortcomings of state-of-the-art parallelization strategies of the MLFMA, we
presented a flexible and efficient ternary partitioning scheme in [30]. This scheme integrates the
advantages of available partitioning strategies in an appropriate manner to parallelize MLFMA tree
structures on given numbers of processors. By using hierarchical structure partitioning (HSP) levels to
joint pure plane wave partitioning (PWP) levels and box partitioning (BP) levels and using a virtual
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local transition (LT) level to switch patterns between BP and HSP, the scheme resolves the disadvantage
of the hierarchical strategy, as well as the hybrid strategy. Numerical results proved that the scheme
achieved a parallel efficiency as high as that of the hierarchical parallelization approach, while the
limitation of the number of MPI processes was significantly weakened. Using this ternary strategy,
together with the auxiliary-tree-based parallel mesh refinement technique and a hybrid octree storage
strategy, electromagnetic scattering by extremely large objects with dimensions exceeding 10 thousand
wavelengths and over 10 billion unknowns was solved, representing the largest number of unknowns
to be solved and publicly reported via MLFMA to date. The ternary parallelization approach was
further developed by incorporating a discontinuous Galerkin (DG) framework [31] and later extended
to accelerate the solution of the DG-based self-dual integral equation method for objects with impedance
boundary conditions (IBCs) [32].

Another direction of developing massively parallel distributed-memory MLFMA is using the fast
Fourier transform (FFT) [33–36]. It preserves the scaling propensity of the FMM while the translation
stage is accelerated by using the FFT. Compare with the directly parallelization of MLFMA, this
approach simplifies the parallelization significantly. The idea of FMM-FFT is combined with the
MLFMA for the hybrid MPI/OpenMP parallel implementation, in which the FMM-FFT is used for the
distributed computation, while the shared memory MLFMA can be used for accelerating computation
on each process [35]. These term parallelization approaches are suitable for modern mixed-memory
supercomputers and are reported to be able to solve problems with 620million unknowns [35]. Readers
can refer to [33–36] for technical details of the terms of the FFT-based parallel MLFMA.

There are other potential and important techniques to simplify the parallelization of FMM and
MLFMA, one of which is the Gaussian beam concept. With the aid of Gaussian beam concept, the
translation stage in FMM can be significantly improved and simplified by using the [37–39]. By using
the Gaussian beam FMM translation operators, the number of levels can be reduced considerably, as
well as the computational effort. Since the very coarse levels are not needed any more, the parallelization
just on a box level is sufficient. This technique provides an effective way to make significant progress
on the parallelization of MLFMA.

All the aforementioned parallel implementations of the MLFMA are based on a general CPU
architecture. Although the capability of the CPU-based parallel MLFMA has been well strengthened,
due to hardware limitations, it is very challenging to further improve its efficiency to satisfy practical
engineering demand. Similar to the development trend of high-performance computing, many-core
accelerators, graphics processing units (GPUs), Intel Xeon Phi coprocessors (MICs), etc., which are
orders of magnitude faster than general CPUs, have received increasing attention. Among these many-
core accelerators, the GPU has shown great potential, as almost 70% of supercomputers in the newest
annual edition of the TOP500 (58th) use GPU accelerators. Due to the special architecture of GPUs and
the complicated structure of the MLFMA, only a few advancements in accelerating MLFMA with GPUs
have been made: GPU implementation of a low-frequency MLFMA [40], multi-GPU implementation of
the MLFMA using OpenMP on a single node [41], and using MPI on GPU clusters [42, 43], which is
far less than that of the CPU-based parallel MLFMA. The parallelization of the MLFMA on a GPU-
accelerated supercomputer platform not only requires highly efficient distributed memory parallel to
the MLFMA but also careful treatments in coincidence with the MLFMA tree partitioning strategy at
different tree levels. To our knowledge, the problem size solved using the GPU-accelerated MLFMA
reported in the society of computational electromagnetics is no larger than millions of unknowns with no
more than tens of GPUs. How to make the MLFMA run efficiently on distributed-memory clusters with
over tens of thousands of GPUs is a challenging task. Recently, the ternary strategy was accelerated
by using GPUs on heterogeneous platforms, which further enlarged the solvable problem size to 24000
wavelengths and 41.8 billion unknowns and the parallel scale beyond tens of thousands of MPI processes,
showing the superior performance and great potential of the approach. This is a significant progress in
the parallelization of the MLFMA. By using GPU accelerators, problems of the same size can be solved
faster than using pure CPU. It can not only used to accelerate the simulation of electromagnetic radiation
and scattering, but also can be applied as an accurate and fast solver to reduce the computational burden
brought by repeatedly computed forward solutions in the inverse scattering problems [44, 45].

In this paper, we review the ternary strategy and provide a comprehensive discussion on its
advantage over the major state-of-the-art parallel strategies of the MLFMA. Our recent progress on
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the GPU acceleration of the ternary parallel MLFMA is also given in brief. We demonstrate the
flexibility and efficiency provided by the ternary strategy on electrically large scattering problems.

2. TERNARY PARALLELIZATION

In the MLFMA, the matrix-vector multiplication in each iteration is split into two parts, namely, the
near-field interaction and far-field interaction. The near-field interaction matrix is calculated the same
as the conventional MoM, with the matrix stored as a block sparse matrix. The far-field interaction
is addressed by aggregation, translation, and disaggregation stages in a group manner, level by level.
The far-field interaction is performed with the aid of the multilevel MLFMA octree. This octree is
constructed by placing the object in a cubic box first. Then, each dimension of the box is bisected,
resulting in at most eight nonempty subboxes. Such a procedure is performed recursively until the size
of the smallest box is no greater than a given value, resulting in the multilevel MLFMA octree. In this
octree, each node corresponds to a box on the level, and there are the same number of plane waves
in all the boxes at the same level. Since unknowns in the SIE are defined only on the outer surface
of the object, the number of nonempty boxes increases approximately fourfold, while the number of
plane waves in each box decreases at approximately the same speed from the current level to the next
lower level. The MLFMA tree is essentially a weighted octree, with the number of plane waves in the
associated box as the weight of a node. The key problem in designing an efficient distributed-memory
parallelization approach of the MLFMA is how to partition the weighted MLFMA tree among MPI
processes accordingly. Since the computational complexity of each MLFMA tree level is O(N ), we need
to assign the workload of each level, which is determined by the number of boxes and plane waves in
each box, among all MPI processes carefully.

Different partitioning strategies result in different parallelization schemes. Figs. 1–3 illustrate
the partitioning strategy of the multilevel tree in the hybrid, hierarchical, and ternary parallelization
approaches. Since the simple parallelization approach can be efficient for small problems only, we do
not discuss it in detail here.

In the hybrid parallelization approach, on higher levels, each box partitions all its plane waves
evenly on all processes along the θ-direction, and we note these levels as PWP levels; on lower levels,
boxes are distributed among MPI processes, and we note them as BP levels, as illustrated in Fig. 1.
The lowest PWP level can be determined by the condition that each process should keep at least 3θ-
directions to satisfy that each MPI process communicates only with its neighboring processes when local
Lagrange interpolation is adopted, thereby determining the levels that perform BP and PWP. Since on
BP levels, all the plane waves of a box are on the same process, while on PWP levels, each process
keeps only a part of the plane waves of a box, on the intermediate level between BP and PWP, a virtual
transition level is designed, on which all-to-all MPI communications are performed to switch different

Figure 1. Illustration of tree partitioning patterns and process groups at different levels in the hybrid
approach.
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Figure 2. Illustration of tree partitioning patterns and process groups at different levels in the
hierarchical approach.

Figure 3. Illustration of tree partitioning patterns and process groups at different levels in the ternary
approach.

partition patterns. During the all-to-all data transformation, the communication volume sent/received
by a process can be approximately estimated as

Nb ×Npw

Np
(1)

where Nb denotes the number of boxes, Npw the number of plane waves in a box, and Np the number
of MPI processes used in this calculation. Since on the middle levels of the MLFMA tree, Nb ×Npw is
approximately a constant, the communication volume estimated as in Eq. (1) cannot be decreased by
choosing a different transition level. If only 32-bit pointers are supported by the MPI standard, which
is true for most of the commonly used MPI libraries, the maximum communication volume must be no
greater than 2GB. Although we can use more MPI processes to reduce the value given in Eq. (1), this
leads to more severe load unbalance.

The hierarchical parallelization approach introduces a new partitioning pattern in which both the
boxes and the plane waves at each level are partitioned among processes at the same time. To this aim,
the MPI processes are also divided into groups level by level, forming a process clustering tree. Since the
conventional hierarchical approach partitions planewaves among processes in the same group along the
θ-direction only, a process binary tree is constructed, as the number of plane waves varies approximately
twofold in the θ-direction between two MLFMA tree levels. The hierarchical approach partitions boxes
among processes at the leaf level. Then, for the upper levels, two neighboring lower-level process groups
are aggregated as a larger parent process group, and plane waves of an upper-level box are partitioned
among processes in the same parent group. Such a procedure continues for higher levels until all MPI
processes are organized in one group, as shown in Fig. 2. For the working level and all higher levels,
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planewaves of the same box are partitioned among all MPI processes, which is the same as the PWP
levels in the hybrid approach. The blockwise hierarchical partitioning approach is a modification of
the conventional hierarchical approach, in which four processes are organized in a group, and both the
θ- and φ-directions of plane waves in a box are bisected, resulting in four blocks of plane waves. The
process numbers of the hierarchical and blockwise hierarchical approaches are critically limited to 2n or
4n, respectively. This brings great inconvenience in practical implementations. When only thousands of
CPU cores can be used in a calculation, the MPI process number can be only 1024, 2048, 4096, or 8192
for the hierarchical partitioning approach, while for the blockwise hierarchical partitioning approach,
the choice is only 1024 or 4096.

To overcome the shortcomings of the hybrid and hierarchical approaches, we proposed a ternary
parallelization approach of the MLFMA, as illustrated in Fig. 3. It combines the advantages of available
partitioning strategies in an appropriate manner. Similar to the hybrid approach, the higher levels of
the MLFMA tree in the ternary approach are also termed the PWP levels. The lowest PWP level is
also determined to be the same as in the hybrid approach to make each MPI process communicate only
with its neighboring processes during interpolation/anterpolation stages. Then, processes in a parent
group are bisected into odd- and even-numbered two subgroups according to their local ranks in the
group, as well as the associated parent box group. Then, all plane waves of a child box are partitioned
evenly along the θ direction among processes in the corresponding process subgroup, as depicted in
Fig. 4. These levels are named HSP levels. Following the lowest HSP level are the BP levels. At the
BP levels, all child boxes of a box group on the lowest HSP level, as well as all their descendants,
are partitioned among the processes in the corresponding leaf group according to their weights. When
the mesh is generally uniform, the weight of the box can be estimated by adding up those of all its
descendants. The edges can also be partitioned among processes accordingly, as well as the near-field
matrix. When the mesh is highly nonuniform, the near-field related calculation should be adjusted by
partitioning edges among MPI processes in a different way from the far interaction to achieve a better
workload balance [31]. At the lowest level, point-to-point communication is conducted to switch near
and far-field partition patterns in each iterative solution step. The flowchart of the ternary PMLFMA
is given in Fig. 5.

Note that the number of HSP levels in the ternary parallelization approach can be freely chosen
as long as it is no greater than the depth of the process binary tree and the workload is well balanced.

Figure 4. Hierarchical structure partitioning at the highest HSP level over 12 MPI processes.



Progress In Electromagnetics Research, Vol. 173, 2022 43

Construct the binary

process clustering tree

Match MLFMA tree 

& Process tree

MLFMA octree 

ternary partitioning

Assemble near field 

matrix

Assemble far field 

matrices

Start

Construct the 

hybrid stored 

MLFMA octree

Calculate right hand

side items

GMRES iteratively 

solution procedure

Construct 

preconditioner

Calculate RCS

Post- processing

Auxiliary tree based 

parallel mesh 

refinement

Finish

Filling aggregation and 

disaggregation matrices

Filling translation 

operators

Filling interpolation/ 

anterpolation matrices

Near interaction

Aggregation

Disaggregation&

Translation

Calculate resudial

Aggregation on 

BP levels 

Partitioning switch 

on LT level

Compute Xi

Converged

Iteration finished

Yes

No

Aggregation on 

HSP levels 

Aggregation on 

PWP levels 

Disaggregation&

Translation on

BP levels

Partitioning 

switch on LT level

Disaggregation&

Translation on

PWP levels

Disaggregation&

Translation on

HSP levels

Read geometry 

Figure 5. Flowchart of the ternary MLFMA.

The HPS levels are initially designed to address certain middle levels of the MLFMA tree where neither
partitioning only the boxes nor plane waves is efficient. However, since for a general 3D object, at
middle levels, the number of boxes increases approximately fourfold, while the number of plane waves
in each box decreases twofold in the θ-direction from the current level to the next lower level, the use of
only two or three HSP levels is sufficient to transmit PWP and BP partitioning patterns and make the
workload among processes at all the MLFMA tree levels well balanced. Therefore, a parallel efficiency
as high as that of the hierarchical parallelization approach can be realized, while the number of MPI
processes is weakly limited.

3. ADVANTAGE OF THE TERNARY STRATEGY

The most important advantage of the ternary strategy is that it can maintain the advantages of the
hybrid and hierarchical strategies at the same time. Our previous study proved that the ternary strategy
can achieve parallel efficiency that is as high as the hierarchical parallelization approach, while the total
number of MPI processes can be more freely chosen [30]. In the following, we provide a short discussion
of comparisons of the ternary strategy with the popular hybrid and hierarchical approaches of the
MLFMA.

Compared with the hybrid strategy, the introduction of HSP in the ternary approach significantly
improves the load balancing, thereby bringing higher parallel efficiency, especially when the process
number is large. Similar to the advantage of the hierarchical strategy over the hybrid strategy, the use
of HPS decreases communications between processes, as well as the overall data transferred. It also
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avoids the global all-to-all communication bottleneck in the hybrid approach. Although similar to the
hybrid approach, on the intermediate level between the highest BP and the lowest HSP level, a virtual
transition level is also required to switch patterns between box and plane wave partitions. Compared
with the global all-to-all communication among all MPI processes in the hybrid approach, the transition
is performed only among processes inside the same leaf node of the process binary tree. Therefore, only
local all-to-all communication is required, and the communication cost is significantly reduced compared
with the global all-to-all case in the hybrid strategy.

A major difference between the hierarchical approach and the ternary approach is that the former
is done in a bottom-up manner, while the latter is done in a top-down manner. There are two main
reasons for this. First, compared with the bottom-up approach, by using the top-down approach, we
can preserve the parent-child relationships as much as possible to reduce interprocess communications
in the far interaction. Second, in MLFMA, the important symmetry property of the plane waves can be
used to reduce the amount of storage that is required. If the plane waves are partitioned into different
MPI processes, the data required using the symmetry may not be local. In that case, extra interprocess
communications are introduced, which may cause deficiency. Therefore, we want to keep as many BP
levels as possible to reduce storage requirements.

In addition, matching with the ternary partitioning strategy, we are able to design a hybrid storage
strategy of the MLFMA octree, which is the key for making the MLFMA applicable for solving problems
with tens of billions of unknowns [30]. In the hybrid storage strategy, MLFMA tree levels are divided
into distributed levels and full levels. On these distributed levels, only a part of the corresponding level
MLFMA is maintained by a process. Those nonlocal tree nodes required to be traversed are compressed
and stored by level, forming the proxy tree. The remaining tree levels are fully stored levels, at which
each process keeps all tree nodes of these levels. According to the MLFMA algorithm, for a given
tree node, all the second near and near interaction boxes of its descendants must be descendants of its
near boxes. In the ternary partition strategy, the second BP level to the lowest level can be chosen as
distributed levels, and the nonlocal proxy tree can be conveniently constructed. At the highest BP level

Table 1. Memory cost for storing the MLFMA tree of an aircraft model at 32GHz using different
strategies.

MLFMA level Complete storage (MB)
Hybrid storage (MB)

Local tree Proxy tree

0 0.022 0.022 0

1 0.044 0.044 0

2 0.176 0.176 0

3 0.527 0.527 0

4 2.988 2.988 0

5 10.063 10.063 0

6 38.145 38.145 0

7 150.557 150.557 0

8 627.693 627.693 0

9 2522.834 2522.834 0

10 10238.445 10238.445 0

11 40885.686 42.589 0

12 163111.267 169.908 0

13 648741.204 675.772 0

14 2558446.963 2665.049 0

15 9941657.827 10355.894 187.89

Total 13,366,434.441 27,687.89
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and those higher levels, each process keeps a complete set of all tree nodes on these levels. It is very
easy to find all near boxes of a box partitioned to the process on the highest BP level and then fill the
proxy tree. Since the number of boxes per level decreases approximately fourfold from a level to the
next higher level, the vast majority of tree storage is taken by these several lowest levels. Significant
memory reduction can be achieved by distributing some of these levels, and the distribution of three
levels can reduce the total tree structure storage to less than 2%. We list in Table 1 that the memory
usage for storing the MLFMA octree of an aircraft model has a length of 57.5m at 32GHz using 960
MPI processes. Using the hybrid storage strategy, the total memory for storing the MLFMA octree is
reduced from about 13.4TB to only 27.6GB. Although the hybrid storage strategy is also applicable
to the hierarchical approach, it brings significant inconveniences in constructing and traversing the
MLFMA tree.

In summary, the ternary strategy hybrids three suitable schemes for partitioning workloads of
different MLFMA tree levels, thereby gaining flexibility, high parallel efficiency, and memory reduction
at the same time. Compared to the hybrid strategy, the ternary strategy improves the load balancing and
the interprocess communications and notably removes the expensive global all-to-all communication,
thereby achieving a higher parallel efficiency; compare to the hierarchical approach, it breaks through
the critical limitation of total process number, keeps as many BP levels as possible to reduce the memory
requirement by using the symmetry of plane waves, and brings great convenience in applying the hybrid
storage strategy as well.

4. GPU ACCELERATION OF THE TERNARY MLFMA

GPUs are specially designed for dealing with massive data parallelism. Compared with the CPU,
however, their ability to execute logical instructions is very weak. Therefore, GPUs are usually used
to accelerate the computationally insensitive parts of a code. As shown in Fig. 5, MLFMA code
can be generally divided into two parts: the setup stage and the iterative solution stage. In the
setup stage, all MLFMA-related matrices are filled and stored: the near-field matrix, the aggregation
and disaggregation matrices, the translation operators, etc. In the iterative solution stage, in each
iteration of the GMRES solver, matrix-vector multiplications are split into near-field interactions and
far interaction parts. The former involves essentially block sparse matrix-vector multiplication, while
the latter involves aggregation, translation, and disaggregation performed level by level.

One of the keys in designing an efficient GPU-accelerated parallel MLFMA is how to partition
the computationally insensitive parts of the workload that have already been distributed appropriately
to a process. “Appropriate” here means that we not only partition the workload into enough smaller
amounts and distribute them among thousands of CPU cores but also fully utilize the hierarchical
memory of the GPU and reduce data communications between the CPU host memory and GPU global
memory as much as possible. Based on the above principles, we proposed a GPU-accelerated ternary
parallel approach of the MLFMA, which is able to solve extremely large electromagnetic scattering
problems with tens of billions of unknowns on GPU heterogeneous platforms. This approach uses the
CPU and GPU asynchronous computing patterns, in which CPU cores and GPU can handle different
parts of the same task or different tasks at the same time. The compute unified device architecture
(CUDA) programming model and the OpenMP multithreaded model are used for GPU and CPU cores,
respectively. Here, we briefly describe the strategy used in accelerating ternary MLFMA with a GPU.

A sketch map of the GPU acceleration of the setup stage of the ternary MLFMA is given in Fig. 6.
Aiming at solving problems with over tens of billions of unknowns, there are enough boxes at the lowest
level for us to use the idea of “one thread per near box pair” and “several thread warps per block” to
partition the workload of the near-field matrix assembly procedure among cores of a GPU accelerator.
In practice, each near box pair associated with the box partitioned on the given MPI process is assigned
to a GPU thread, and then a set of threads with the total number equal to several times the GPU warp
size are organized as a block. Similar strategies are used for the aggregation and disaggregation matrix
filling except that the observer is a box instead. For the translation operators, the idea of “one thread
per plane wave” and “one block per operator” is used.

For the iteration solution procedure, since the MLFMA tree is termed the BP, PWP, and HSP
levels, different parallelization strategies coinciding with the ternary partition are used. Generally, the
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Figure 6. GPU acceleration of the setup stage of the ternary MLFMA.

Figure 7. GPU acceleration of the iterative solution stage of the ternary MLFMA.

idea of “one thread per box” and “several warps of threads per block” is used for BP levels, the idea
of “one block per box” and “one thread per planewave” is used for HSP levels, and the idea of “several
blocks per box” and “one thread per planewave” is used for the PWP levels. These ideas are designed
to adapt the varying number of boxes and plane waves between different MLFMA tree levels. The GPU
acceleration of the iterative solution stage of the ternary MLFMA is illustrated in Fig. 7. Again, the
asynchronous computing pattern between the CPU and GPU is used, with a carefully designed CPU
and GPU workload ratio to make the computation time cost for these two parts overlap to reduce the
overall running time.
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5. NUMERICAL RESULTS AND DISCUSSIONS

In this section, a series of numerical experiments are conducted to evaluate the accuracy, efficiency
and performance of the presented algorithm. All the computations are performed on a heterogeneous
parallel computer platform, namely, Xiandao-1, at the Computer Network Information Centre (CNIC),
Chinese Academy of Sciences (CAS). Each node has 128 gigabytes (GB) of host memory, a 32-core x86
CPU and 4 noncommercial SIMT accelerators, which have similar performance to NVidia P100 GPU
with PCIe. The nodes are interconnected by a 200Gbps Infiniband HDR network.

We first show the parallelization efficiency of the ternary parallel approach. Fig. 8 presents the
parallelization efficiency for the total duration (including the setup and iterations) of solving the
scattering by a sphere of diameter 144m at 0.3GHz discretized with 20,104,617 unknowns. The solution
is parallelized with 2, 4, 8, 16, 32, 64, 80, 100 and 128 MPI processes. The parallel efficiency when
2 processes are used is defined as 100%. The parallel efficiency remains as high as over 80% on with
128 MPI processes, corresponding to an over 102-fold speedup. The parallel efficiency given in [30] on
Era-II is approximately 72% when 64 MPI processes are used compared with a single-process case. The
parallel efficiency here is much larger than that in [30]. This is because the network used for Xiandao-1
is 200Gbps Infiniband HDR, which is significantly faster than that for Era-II (100Gbps Infiniband)
when the number of computing nodes used is small. In addition, defining the parallel efficiency of 2
processes as 100% also brings a higher value.

Figure 8. Parallel efficiency for the solution of a sphere of diameter 144m at 0.3GHz involving
20,104,617 unknowns.

We then demonstrate accuracy of the method. The scattering by an extremely large sphere with a
diameter of 3040m is considered. There are in a total of 10,068,755,376 edges, 14 MLFMA tree levels.
The GMRES solver converges to 0.001 in 158 iterations. The entire computation takes 3 hours and
48minutes. In total, 42.8TByte RAM and 36.6TByte GPU memory were used. The calculated results,
together with Mie series, are presented in Fig. 9. According to this figure, the calculated results of the
parallel MLFMA well agree with the Mie series.

To evaluate the performance and flexibility of the proposed ternary parallelization approach for
MLFMA for handling arbitrary geometries, a complicated aircraft model is calculated. We first set the
frequency of the incident planewave as 4GHz to show the speedup of the GPU-accelerated PMLFMA
(GPU-PMLFMA) compared with 8 OpenMP thread-accelerated PMLFMA (CPU-PMLFMA). At this
frequency, the aircraft has a maximum dimension of 767λ, with 61,370,448 unknowns. The problem
is solved using 16 MPI processes and 8 threads for each process. When GPU accelerators are used, a
total of 16 GPU accelerators are used, with each MPI process managing one card. After 42 iterations,
a relative residual error of 0.005 is realized. As listed in Table 2, compared with the eight-threaded
CPU-PMLFMA, the speedup of GPU-PMLFMA is 6.45, which can be quite important for practical
applications.

Then, we increase the incident planewave frequency to 60GHz. Fig. 10 presents the V V -polarized
bistatic radar cross section (RCS) of the aircraft model at 60GHz calculated using the GPU acceleration
version of the PMLFMA. At this frequency, the aircraft has a maximum dimension of 11503λ, with
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(a) (b)

Figure 9. V V -polarized bistatic RCS of a sphere of diameter 3040m that is discretized with
10,068,755,376 unknowns, where 0 and 180 correspond to the back-scattering and forward-scattering
directions, respectively. (a) From 0◦ to (b) 180◦, a detailed view of the RCS along the forward scattering
direction.

Table 2. Calculation time of an aircraft model at 4GHz using different PMLFMA approaches.

Algorithm CPU-PMLFMA GPU-PMLFMA Speedup

Vs and Vf filling 7.16 s 0.70 s 10.23

T filling 89.11 s 13.81 s 6.45

Znear filling 1911.50 s 197.61 s 9.67

Iteration 283.19 s 143.15 s 1.98

Total 2290.96 s 355.27 s 6.45

Figure 10. V V -polarized bistatic RCS of
the aircraft model at 60GHz. The target is
illuminated by a plane wave that is propagating
in the xy-plane at 30 degrees from the x-axis.

Figure 11. V V and V H polarized bistatic RCSs
of the ship model at 20GHz.

10,166,501,376 unknowns. The problem is solved using 2560 MPI processes and 2560 GPU accelerators,
with each MPI process managing one card. After 116 iterations, a relative residual error of 0.005 is
realized. The duration of the computation is 3 hours and 55 minutes. Detailed information is provided
in Table 3. In total, 31.9TByte RAM on the CPU and 36.7TByte GPU host memory were used.
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The last example is a ship model at 20GHz, which is illustrated in Fig. 11. The maximum dimension
of the ship is 11970λ at this frequency. Discretization of the problem leads to a total of 10,459,971,504
unknowns. As illustrated in Fig. 11, the nose of the ship is directed towards the z-axis and it is
illuminated by a plane wave that is propagating in the yz -plane at 70◦ from the +z-axis. The electric
field is polarized in the θ-direction. The V V - and V H-polar bistatic RCSs are plotted as functions of
the bistatic angle in the observation plane that is defined by θ = 70◦ and φ = 0 ∼ 360◦ in Fig. 11.
After 102 iterations, a relative residual error of 0.005 was realized. The duration of the computation is
3 hours and 45 minutes. Additional simulation details are also presented in Table 3.

Table 3. Simulation details.

Target Aircraft model Ship model

MLFMA levels 16 16

HSP levels 5 ∼ 10 5 ∼ 10

Residual error 0.005 0.005

Iteration number 116 102

Vs and Vf filling time 0.22 s 0.11 s

T filling time 260.32 s 294.99 s

Znear filling time 158.03 s 225.89 s

Iteration time 12947 s 12074 s

Total time 14105 s 13501 s

Peak memory on the CPU 31.9TB 29.2TB

Peak memory on all GPUs 36.7TB 36.6TB

6. CONCLUSIONS

In this paper, we have reviewed the ternary parallelization approach of the MLFMA and its GPU
acceleration for extremely large-scale electromagnetic simulations. As discussed in the paper, the ternary
parallelization approach hybrids available partitioning strategies in an appropriate manner. Therefore,
it maintains the well-scaling property and can achieve as high parallel efficiency as the hierarchical
strategy, while the total process can be more freely chosen, which is important in practical application.
Efficient parallelization of the MLFMA using the ternary strategy makes it applicable for solving large
and realistic problems involving tens of billions of unknowns.
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