Vol. 109
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-03-04
Towards Localization and Classification of Birds and Bats in Windparks Using Multiple FMCW-Radars at Ka-Band
By
Progress In Electromagnetics Research M, Vol. 109, 1-12, 2022
Abstract
Birds and bats are at risk when they are flying near wind turbines (WT). Hence, a protection of bats and birds is postulated to reduce their mortality e.g. due to collisions with the rotor-blades. The use of radar technology for monitoring wind energy installations is becoming increasingly attractive for WT operators, as it offers many advantages over other sensor systems. Timely localization and classification of the approaching animal species is very crucial about the reaction measures for collision avoidance. In this work, a localization, classification and flight path prediction technique has been developed and tested based on simulated radar signals. This allowed us to classify three different birds and one bat species with an accuracy of 90.18%. For accurate localization and target tracking, five frequency modulated continuous wave (FMCW) radars operating in Ka-Band were placed on the tower of the WT for 360˚ monitoring of the WT.
Citation
Ashkan Taremi Zadeh, Murat Diyap, Jochen Moll, and Viktor Krozer, "Towards Localization and Classification of Birds and Bats in Windparks Using Multiple FMCW-Radars at Ka-Band," Progress In Electromagnetics Research M, Vol. 109, 1-12, 2022.
doi:10.2528/PIERM21110502
References

1. Brinkmann, R., O. Behr, I. Niermann, and M. Reich (eds.), Entwicklung von Methoden zur Unter-suchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen: Ergebnisse eines Forschungsvorhabens, Umwelt und Raum, Schriftenreihe Institut für Umweltplanung, 2011.

2. Saidur, R., N. A. Rahim, M. R. Islam, and K. H. Solangi, "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Vol. 15, No. 5, 2423-2430, June 2011.
doi:10.1016/j.rser.2011.02.024

3. Rydell, J., H. Engström, A. Hedenström, J. K. Larsen, J. Pettersson, and M. Green, The Effect of Wind Power on Birds and Bats - A Synthesis, 6511, Swedish Environmental Protection Agency, 2012.

4. Grünkorn, T., J. Blew, T. Coppack, O. Krüger, G. Nehls, A. Potiek, M. Reichenbach, J. von Rönn, H. Timmermann, and S.Weitekamp, Ermittlung Der Kollisionsraten von (Greif) Vögeln Und Schaffung Planungsbezogener Grundlagen Für Die Prognose Und Bewertung Des Kollisionsrisikos Durch Windenergieanlagen (PROGRESS). Schlussbericht Zum Durch Das Bundesministerium Für Wirtschaft Und Energie (BMWi) Im Rahmen Des 6. Energieforschungsprogrammes Der Bundesregierung Geförderten Verbundvorhaben PROGRESS, FKZ 0325300A-D, 2016.

5. Bulling, L., D. Sudhaus, D. Schnittker, E. Schuster, J. Biehl, and F. Tucci, Vermeidungsma-maβnahmen Bei Der Planung Und Genehmigung von Windenergieanlagen - Bundesweiter Katalog von Maβnahmen Zur Verhinderung Des Eintritts von Artenschutzrechtlichen Verbotstatbeständen Nach s 44 BNatSchG, Fachagentur Windenergie an Land, 2015.

6. Mao, X., J. K. Chow, P. S. Tan, K.-F. Liu, J. Wu, Z. Su, Y. H. Cheong, G. L. Ooi, C. C. Pang, and Y.-H. Wang, "Domain randomization-enhanced deep learning models for bird detection," Scientific Reports, Vol. 11, No. 1, 639, December 2021.
doi:10.1038/s41598-020-80101-x

7. Niemi, J. and J. T. Tanttu, "Deep learning-based automatic bird identification system for offshore wind farms," Wind Energy, Vol. 23, No. 6, 1394-1407, 2020.
doi:10.1002/we.2492

8. McClure, C. J. W., B. W. Rolek, L. Dunn, J. D. McCabe, L. Martinson, and T. Katzner, "Eagle fatalities are reduced by automated curtailment of wind turbines," Journal of Applied Ecology, Vol. 58, No. 3, 446-452, 2021.
doi:10.1111/1365-2664.13831

9. Linder, A. C., H. Lyhne, B. Laubek, D. Bruhn, and C. Pertoldi, "Quantifying raptors' flight behavior to assess collision risk and avoidance behavior to wind turbines," Preprints, 2021, doi: 10.20944/preprints202102.0391.v1.

10. Rahman, S. and D. A. Robertson, "Classification of drones and birds using convolutional neural networks applied to radar micro-doppler spectrogram images," IET Radar, Sonar and Navigation, Vol. 14, No. 5, 653-661, 2020.
doi:10.1049/iet-rsn.2019.0493

11. Björklund, S. and N. Wadströmer, "Target detection and classification of small drones by deep learning on radar micro-doppler," 2019 International Radar Conference (RADAR), 1-6, 2019.

12. Li, D., R. Chen, J. Gong, and J. Yan, "Comparison of radar signatures based on flight morphology for large birds and small birds," IET Radar, Sonar and Navigation, Vol. 14, No. 4, 1365-1369, September 2020.

13. Zaugg, S., G. Saporta, E. van Loon, H. Schmaljohann, and F. Liechti, "Automatic identification of bird targets with radar via patterns produced by wing apping," Journal of The Royal Society Interface, Vol. 5, No. 26, 1041-1053, September 2008.
doi:10.1098/rsif.2007.1349

14. Zadeh, A. T., M. Mälzer, D. H. Nguyen, J. Moll, and V. Krozer, "Radar-based detection of birds at wind turbines: Numerical analysis for optimum coverage," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, 2021.

15. Nguyen, D. H., J. Ala-Laurinaho, J. Moll, V. Krozer, and G. Zimmer, "Improved sidelobe suppression microstrip patch antenna array by uniform feeding networks," IEEE Transactions on Antennas and Propagation, 2020.

16. Lipa, B. J. and D. E. Barrick, "FMCW signal processing,", 1990.

17. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley & Sons Inc., 2012.

18. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation, Artech House Publishers, 2005.

19. Lacomme, P., J.-P. Hardange, J.-C. Marchais, and E. Normant, "Noise and spurious signals," Air and Spaceborne Radar Systems, 47-58, 2001.
doi:10.1016/B978-189112113-5.50007-3

20. Crecraft, D. I. and S. Gergely, Analog Electronics, 2002.

21. Scherr, S., R. Afroz, S. Ayhan, S. Thomas, T. Jaeschke, S. Marahrens, A. Bhutani, M. Pauli, N. Pohl, and T. Zwick, "Influence of radar targets on the accuracy of FMCW radar distance measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3640-3647, 2017.
doi:10.1109/TMTT.2017.2741961

22. Dakin, B. G. R., "The biophysics of bird ight: Functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors," Canadian Journal of Zoology, Vol. 93, No. 12, 964, 2015.

23. Rahman, S. and D. A. Robertson, "In-flight RCS measurements of drones and birds at K-band and W-band," IET Radar, Sonar & Navigation, Vol. 13, No. 2, 300-309, 2019.
doi:10.1049/iet-rsn.2018.5122

24. Urmy, S. S. and J. D. Warren, "Quantitative ornithology with a commercial marine radar: Standard-target calibration, target detection and tracking, and measurement of echoes from individuals and ocks," Methods in Ecology and Evolution, Vol. 8, No. 7, 860-869, November 2016.
doi:10.1111/2041-210X.12699

25. Jahangir, M., B. I. Ahmad, and C. J. Baker, "Robust drone classification using two-stage decision trees and results from sesar safir trials," 2020 IEEE International Radar Conference (RADAR), 636-641, 2020.
doi:10.1109/RADAR42522.2020.9114870

26. Bruderer, B., D. Peter, A. Boldt, and F. Liechti, "Wing-beat characteristics of birds recorded with tracking radar and cine camera," Ibis, Vol. 152, No. 2, 272-291, April 2010.
doi:10.1111/j.1474-919X.2010.01014.x

27. Taylor, L. A., G. K. Taylor, B. Lambert, J. A. Walker, D. Biro, and S. J. Portugal, "Birds invest wingbeats to keep a steady head and reap the ultimate benefits of ying together," PLOS Biology, Vol. 17, No. 6, e3000299, June 2019.
doi:10.1371/journal.pbio.3000299

28. Mirkovic, D., P. M. Stepanian, J. F. Kelly, and P. B. Chilson, "Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms," Scientific Reports, Vol. 6, No. 1, 35637, December 2016.
doi:10.1038/srep35637

29. Bruderer, B. and A. G. Popa-Lisseanu, "Radar data on wing-beat frequencies and ight speeds of two bat species," Acta Chiropterologica, Vol. 7, No. 1, 73-82, June 2005.
doi:10.3161/1733-5329(2005)7[73:RDOWFA]2.0.CO;2

30. Ostertagová, E., "Modelling using polynomial regression," Procedia Engineering, Vol. 48, 500-506, Modelling of Mechanical and Mechatronics Systems, 2012.