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Towards Localization and Classification of Birds and Bats
in Windparks Using Multiple FMCW-Radars at Ka-Band

Ashkan Taremi Zadeh*, Murat Diyap, Jochen Moll, and Viktor Krozer

Abstract—Birds and bats are at risk when they are flying near wind turbines (WT). Hence, a protection
of bats and birds is postulated to reduce their mortality, e.g., due to collisions with the rotor-blades.
The use of radar technology for monitoring wind energy installations is becoming increasingly attractive
for WT operators, as it offers many advantages over other sensor systems. Timely localization and
classification of the approaching animal species is very crucial about the reaction measures for collision
avoidance. In this work, a localization, classification, and flight path prediction technique has been
developed and tested based on simulated radar signals. This allowed us to classify three different birds
and one bat species with an accuracy of 90.18%. For accurate localization and target tracking, five
frequency modulated continuous wave (FMCW) radars operating in Ka-Band were placed on the tower
of the WT for 360◦ monitoring of the WT.

1. INTRODUCTION

The continuous increase of wind energy worldwide constitutes a significant threat to birds and bats [1, 2].
Every year, thousands of birds and bats die either through direct collision with wind turbines (WT) or,
especially in the case of bats, through barotrauma effects [3, 4]. In order to protect these endangered
species, governments in many countries, including Germany, have adopted various measures to reduce
the mortality of these species. In Germany, many WTs are currently affected by shutdown algorithms
to avoid collision of bats with turbines during seasons and times with high bat activity [5]. These
algorithms are now the most common minimization measure to reduce operational bat kills at WTs in
Germany. In areas with many protected bird species like red kites, there are even building restrictions.
These minimization measures are an integral part of the planning of WT. Although these laws protect
the animals from extinction, they are detrimental to achieving climate goals and the profitability of
WTs.

For years, there has been a lot of research to develop systems with the goal of minimizing shutdown
times and also obtaining building permits even for areas with high bird activity. This can be achieved,
for example, by recognizing the approaching bird or bat in time and reacting accordingly. So far,
different methods have been used to detect and classify birds and bats. Many WT operators use
camera-based systems to detect and classify birds using camera images and neural networks [6–9].
Here, high-resolution cameras are used to detect the animals at large distances. The performance of
these systems is however strongly limited by weather conditions and good light conditions. Even with
optimal conditions no good classification can be achieved in large distances, because only a few pixels
are visible on the images, which make the classification difficult.

Therefore, other methods like radars are more suitable, because they are less dependent on weather
or light conditions and are able to detect moving objects even at great distances. Hence, radar
systems have been considered as a promising approach in recent years. In [10–12], different methods
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were proposed to classify birds by micro Doppler signatures, which are generated by the wing beat.
Mostly convolutional Neural Network is used for the classification. In addition, other signal processing
techniques exist such as continuous wavelet transform in which the wing beat patterns are used for the
classification [13]. So far, there is no reliable method of species detection by radar. A method with
which it is possible to distinguish different species would be a great advance for collision avoidance.

In this work, we have developed a new method to classify different bird and bat species by analyzing
the back scattered energy coming from the wing beat of the flying animals. In addition, localization and
classification algorithms were developed based on numerical data which we can determine the location
of the birds using multi-radar technology and predict the flight path using predictive analysis. The
timely localization and classification of the animals approaching the WT could can lead to an adaptive
WT control strategy so that currently implemented shutdown algorithms leading to revenue losses can
be overcome.

2. SIMULATION ENVIRONMENT

In order to find a suitable localization and classification method, the simulation environment had to be
implemented realistically. The radar system operates in frequency-modulated continuous wave (FMCW)
mode in the frequency band from 33.4 to 34.15GHz. The output power of the radar sensor is about
30 dBm and an antenna gain of 20.28 dBi. In the simulation, a WT of type Vestas V100-2.0MW with
a nacelle height of 80 meters and a rotor blade length of 49m is located in the center of the coordinate
system in PWT = [x y z] = [0 0 0]. In order to find the optimal position of the radar systems for
all-round coverage of the WT, we carried out a numerical study in [14]. Through this work we have
found that we need at least five radar systems for optimal coverage around the WT, which should
be attached to the WT tower at a height of 15m and an elevation angle of 75◦. Figure 1 shows the
simulation environment. In order to have enough time for a suitable reaction for approaching animals,
we defined a danger zone with a radius of 400m. If an object approaches with a speed of 10 m

s , the WT
has 40 s to shut down.

Figure 1. Simulation environment with WT model. In this figure the WT is marked with I, antenna
diagram with II, the reference height of the nacelle with III, the border of the danger zone with IV and
the ground with V [14].

The simulation is based on the weighting of the radar target by the antenna diagram. The antenna
diagram, shown in Figure 4, consists of the polar angle θ, the azimuthal angle ϕ and amplitude
A in spherical coordinates. The radar signal is compared and weighted according to the position
PTarget = (θtarget, ϕtarget, rtarget) of the radar target with the antenna diagram. More information about
this antenna can be found in [15].

The simulation of the radar signal is shown schematically in Figure 2, which is described in more
detail in Section 2.1.
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Figure 2. Schematic representation of the signal model used in the simulation.

2.1. Transmitted Signal Model

The transmitted signal can be expressed by a sinusoidal function with a frequency f . The frequency of
the simulated FMCW radar increases linearly with a slope α:

f = fc + αt (1)

α = B/T (2)

where fc = 33.775GHz is the carrier-frequency; T is the duration of a chirp; and B is the bandwidth
of a chirp. B and T are set to 750MHz and 2.56ms, respectively. The phase of the transmitted signal
is given by the integral of the frequency with respect to time multiplied by 2π. The transmitted signal
can hence be expressed as [16]:

st(t) = cos

(
2π

(
fct+

1

2
αt2

))
(3)

2.2. Received and Mixed Signal Models

The power of the backscattered radiation Sr from an object at a distance R and an incident power
density Si is proportional to its radar cross section (RCS). The RCS has following definition [17]:

σ = lim
R→∞

4πR2Sr

Si
(4)

The power Pr of the signal which is backscattered from an object with a RCS σ at a distance R is given
by the radar equation [18]:

Pr =
PtG

2σλ2

(4π)3R4
(5)

where Pt, G, and λ are the transmitted power, the gain factor, and the wavelength of the transmitted
radiation, respectively. The amplitude A of the backscattered signal is proportional to the square root
of Pr. Since the calibration factor is unknown, in the simulation it is assumed that A =

√
Pr.

The backscattered signal from an object is delayed relative to the transmitted signal by a time τ .
This leads to the following expression for the backscattered signal [16]:

sr(t) = A · cos
(
2π(fc(t− τ) +

1

2
α
(
t− τ)2

))
(6)

Assuming that the object is initially at a distance R from the radar and has a constant radial velocity
v, the time delay is τ = 2(R + vt)/c. For an ideal receiver the intermediate frequency signal (IF) is



4 Taremi Zadeh et al.

obtained by multiplying the transmitted signal with the received signal, which leads to a high frequency
and a low frequency term. The high frequency term is filtered out, resulting in [16]:

sIF (t) = A·cos
(
2π

(
αtτ + fcτ − 1

2
ατ2

))
= A·cos(4π(αt(R+vt)/c+fc(R+vt)/c−α(R+vt)2/c2)) (7)

In this equation the terms of order 1/c2 and t2 are negligibly small compared to the others. This leads
to the following approximated expression for sIF (t):

sIF (t) ≈ A · cos
(
2π

(
2αRt+ 2fcvt+ 2fcR

c

))
(8)

The first summand in the cosine function describes the frequency shift due to the time-delay between
the transmitted and received signals, while the second term represents the Doppler frequency shift. The
third term represents a constant phase shift, which is related to the initial distance between the radar
and the object.

2.3. Noise Model

In order to make the simulation more realistic, the received signal is superimposed with thermal noise,
which can be described by a Gaussian function [19]. In the simulation the thermal noise is modeled
by generating a random voltage according to a Gaussian distribution for each sampling point. The
average noise power is given by the variance of this Gaussian distribution, which increases linearly with
the temperature of the receiver and the bandwidth of the signal [20]. The simulation can be done
for different signal to noise ratios (SNRs). For these simulations, a signal to noise ratio of 1 dB was
assumed. Considering the noise level present in the received signal, the radar equation of a monostatic
radar can be extended to obtain the expression of the radar SNR as follows [21]:

SNR =
PTG

2σλ2

(4π)3R4kTBFn
(9)

with the antenna gain G, transmit power PT , target distance R, temperature T , bandwidth B,
Boltzmann constant k, and noise figure Fn.

2.4. Bird Model

The birds are modelled by 5 dynamically connected points as shown in Figure 3. The central point
represents the body, while the other four points represent the tips of the left/right upper wing and
forewing. The total received signal is obtained by superposition of the signals received from each point.
The wing-points move in the plane, which is perpendicular to the flight-direction of the bird. The angle
between the xy-plane and the vector of the upper wing is represented by β, while γ represents the angle
between the xy-plane and the vector of the forewing as shown in Figure 3. Both angles vary sinusoidally
with the wingbeat frequency f . A full wingbeat period consists of an up- and a downstroke. During the
downstroke the wings are extended in order to maximize the lifting force, while the bird folds its wings
during upstroke in order to minimize the counterproductive downing force [22]. In Figure 3 the picture
at t = 0 shows the beginning of a downstroke, when the angle β(t) is at a maximum. At that time
the bird unfolds its wings by increasing the angle γ(t) in order to maximize the lifting force during the
following downstroke. In the simulation this is taken into account by delaying γ(t) by π/4 with respect
to β(t). The mathematical implementation is as follows:

β(t) = 60◦ · cos(ωt) (10)

γ(t) = 60◦ · cos(ωt− π/4)− 10◦ (11)

where ω is the angular wing beat frequency of the bird. Figure 3 visualizes the motion of the wings by
showing an equidistant time series of wing positions during a full wing beat period.
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Figure 3. Equidistant time series of a full wingbeat period.

2.5. Dynamic RCS Model of the Wings

The radar cross section of birds is of the order of 0.01m2 [23]. While the RCS of the body is nearly
constant during a wingbeat period, the RCS of the wings varies with their positions [24]. Since
information about the distribution of the RCS between the body and the wings for the analyzed bird
species is not available in the literature, we assume in the simulation that the RCS of the body is
one half of the total RCS σ, while the RCS of each wing point equals σ

8 if the radar beam hits the
corresponding wing plane vertically. The value of σ depends on the simulated bird species.

The RCS for each of the four wing points is assumed to be proportional to the power of the radiation
hitting the surface of the corresponding wing plane. The proportionality factor is given by the cosine
of the incident angle θ of the radar beam on a wing-plane. It is assumed that the wing plane of each
upper wing is spanned by the vector of the flight direction of the bird and the vector connecting the
body with the tip of each upper wing, while the wing plane of each forewing is spanned by the vector
of flight direction and the vector connecting each tip of a upper wing with the tip of the corresponding
forewing. The RCS of the wing points σi is calculated as follows:

σi =
σ

8
· cos(θi) (12)

where i is an index representing the four wing points.

2.6. Classification

The radar signals generated by different bird species are analyzed through numerical simulations.
Different features such as wing beat frequency, RCS, and radial flight speed can be extracted from
the IF-signal. The wing beat frequency can be extracted by calculating the backscattered energy of the
radar signals generated by the motion of the wings relative to the body. One goal of this analysis is to
predict the correct bird species based on these extracted features (see Section 3.2). The classification
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is done by a machine-learning algorithm, which needs training data as input. We have performed 1140
simulations in which 75% of the data were used for the training and 25% for the validation. The training
data are generated by simulating the flight of a bird for a certain amount of time and then extracting
the relevant features from the computed IF-signal. This is done for different bird species at different
starting positions, flight speeds and flight directions.

It should be comprehensible, in which way the algorithm uses the features to makes its predictions.
This is possible for a Decision Tree or a Support Vector Machine (SVM) by visualising the tree or the
decision regions respectively, and since the algorithms later have to learn and analyze the data in real
time, it is also important that the algorithms are fast and also have a high degree of accuracy. Decision
Trees have been shown to be suitable when classifying drones and birds. In [25], the authors used a
Decision Tree classifier and could already show the effectiveness of the Decision Trees at filtering out
non-drone targets like birds.

2.7. Simulations

Figure 4 shows different simulations performed for this study. For this purpose, we simulated all possible
scenarios that can occur during a bird flight. For this we simulated the straight flights in different angles
(5◦ steps between 0◦ and 90◦), the flights in different heights (5m steps between 10m and 120m) and
the curved flights by randomly chosen flight radius (between 10m and 50m). All these simulations were
performed for the distances 50m, 100m, 150m, 200m, 300m, and 400m.

Four different animals have been considered, i.e., a red kite (Milvus milvus), a pigeon (Columbidae),
a songbird (Alauda arvensis), and a bat (Eptesicus serotinus). The red kite has a RCS of 0.01m2 with
a mean wingspan of 1.6m and a wingbeat frequency of 2.8Hz (SD ±0.5) [26]; the pigeon has a RCS

Figure 4. In angle simulations the flight trajectories of a bird in different angels towards and away
from the WT is depicted. Through curve simulations we have simulated the scenario in which the bird
does not perform a straight line flight, but flies a curve. In height simulations the flight trajectories of
a bird in different heights towards the WT is simulated.
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of 0.01m2 with a mean wingspan of 0.68m and a wingbeat frequency of 5.5Hz (SD ±0.2) [27]; the
songbird has a RCS of 0.0005m2 with a mean wingspan of 0.4m and a wingbeat frequency of 9.8Hz
(SD ±0.8) [26]; and the bat has a RCS of 0.00021m2 with a mean wingspan of 0.32m and a wingbeat
frequency of 7.5Hz (SD ±0.63) [28, 29]. In addition to the wing beat, we also simulated gliding flights
for red kite (fwingbeat = 0Hz) by having the bird glide through the air.

3. RESULTS

3.1. Localization

By using multiple radar systems looking in different directions, localization of the object can be achieved
in real time by amplitude analysis. Therefore, we have developed algorithms that estimate the position
of the object by analyzing the amplitude of all radar signals. For example, if the threshold is crossed
only for radar 1 but not for other radars, the object is located in front of radar 1. If the threshold
is crossed for radar 1 and radar 2, the object must be located between these two radars. By this
information and the distance information which is available by FMCW radars, a localization can be
achieved. Figure 5 visualizes how the algorithm works. Since the FMCW radar only provides distance
information, accurate localization of the object becomes infeasible. For this reason, the algorithm
calculates a possible position, which is marked in red in Figure 5. Each point on this red sphere surface
has the same distance to the radar.

For collision avoidance measures, it is not enough to know where the object is, but also whether the
object is approaching or moving away. In order to predict the position of the bird in the next seconds,
we have extended the localization algorithms to predict the position of the object in the future. For this,

(a) (b)

(c) (d)

Figure 5. Visualization of the localization algorithm. The black dot represents the approaching object
and and the red area is the area calculated by the algorithm where the object may be located. In (a) the
bird is located in a distance of 400m in front of the first radar, in (b) the bird is located in a distance
of 200m in front of the first radar, in (c) the bird is located in 400m between the first and the second
radar and in (d) the bird is located between the first and second radar in a distance of 200m.
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(a)

(b) (c)

Figure 6. (a) Shows the radargram of a simulation in which the bird approaches the WT at the
beginning and then moves away. (b) Shows the first analysis moment, marked with an yellow arrow in
Figure (a). (c) Shows the second moment of analysis, marked with an red arrow in Figure (a). The
values depicted on the radargram are the results of the range estimation by the polynomial regression
algorithm.

we used a polynomial regression to predict the position in the next second. Polynomial Regression is a
form of regression analysis in which the relationships between the independent variables and dependent
variables are modeled in the nth degree polynomial [30]:

yi = α0 + α1xi + α2x
2
i + . . .+ αmxmi + ϵi (i = 1, 2, . . . , n) (13)

where ϵi is an unobserved random error with mean zero conditioned on a scalar variable xi and the
unknown parameters αm. In Figure 6, the radargram of a simulation is depicted, in which at the
beginning the bird is approaching the WT and then moves away from the WT. The yellow arrow shows
the moment of the first analysis. After one second of data acquisition, we run the first analysis with
polynomial regression (Figure 6(b)), and after another second, which is marked with a red arrow, we
make another analysis (Figure 6(c)). With this method we repeat the analysis every second and can
estimate the position of the object for the next second. The results of the regression are also depicted
on the radargram. In the first analysis, a distance of 219m is estimated and in the second analysis a
distance of 271m. By this method, in addition to the position information we get from multi-radar, we
know if the object is approaching or moving away from us.

3.2. Classification

For the classification of the birds, finding suitable features is very crucial. Therefore, the size of the
birds and wing beat frequency are extremely important. To extract the wing beat frequency of birds,
first we calculate the energy of the Fourier transformed signal from each row of the radargram Rij and
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Figure 7. The energy vector from Equation (14) is depicted in the left figure. The right figure shows
the frequency spectrum of the left figure.

Figure 8. The left figure shows the set wing beat frequency for the simulations against the calculated
magnitude. The right figure shows the extracted wing beat frequencies.

calculate the mean:

Ei =
1

n

n∑
j=1

|R(i, j)|2 (14)

The transformation of the energy vector Ei into frequency spectrum gives us the wing beat frequency:

fwingbeat = max(FFT (Ei)) (15)

The result of Equation (14) is depicted in Figure 7. With this method we are able to extract the wing
beat frequencies of flying animals.

As the second classification feature we determine the energy vector and calculated the average
power of the energy. It has been found that the average power of the energy vector is a good indication
of the size of the birds depending on the distance. In Figure 8 we can see the extracted wing beat
frequencies from 1140 simulations and the calculated magnitude. Here we can see the variations in
magnitude caused by different distances. As can be seen in the figure, the set frequencies for the birds
and bat could be extracted very well. Since the amplitude is dependent on the measured distance, the
distance was assumed to be the third feature in the classification (Figure 9).

After testing both SVM and Decision Tree, it turned out that the predictions of the Decision
Tree have a significantly better accuracy than those of the the SVM for this classification problem.
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Table 1. The confusion matrix of the classification algorithm, which describes the performance of a
classifier.

Bat Pigeon Red Kite Songbird

Bat 71 0 2 5

Pigeon 1 69 12 0

Red Kite 1 2 67 2

Songbird 3 0 0 50

Figure 9. This figure shows the features for the classification which consists of the extracted wing beat
frequencies, the calculated magnitude and the detected range.

Therefore, for further analysis, we used the Decision Trees as the basis for classification. With this
classification model, we were able to achieve 90.18% accuracy. Table 1 presents the confusion matrix of
the classification.

Since the simulation data was simulated for discrete distances from the radar, regardless of the
classification result, we wanted to run simulations with randomly chosen distances to validate the
classification algorithm. Therefore, we performed 5 simulations with randomly chosen flying animals
at the following distances: 74m, 232m, 112m, 267m, 319m. The classification algorithm was able to
classify correctly in all these 5 cases.

4. CONCLUSION

In this work a simulation environment was developed, with which it is possible to simulate different
flying animals activity scenarios at the WT. The goal of this work was the development of localization
and classification algorithms that allow us to detect, localize, and classify different flying animals by
radar. This allowed us to model three different bird species and one bat species and classify them with
90.18% accuracy. By modeling different bird and bat species, further feature extraction methods could
be developed in the future, which could lead to more accurate classification algorithms. The application
of these algorithms on WTs could lead to a timely detection of flying animals and their flight behavior,
which can be very crucial for the development of an adaptive WT control.
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