Vol. 106
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-08
Bandwidth Improvement of Bowtie Antenna for GPR Applications Using Antipodal Technique, Corner Bending, and Triangular Slot Modifications
By
Progress In Electromagnetics Research M, Vol. 106, 83-92, 2021
Abstract
In this paper, the bandwidth of a bowtie antenna is improved to meet the requirements of Ground Penetrating Radar (GPR) applications that need a fractional bandwidth greater than 100% and are able to operate at low frequencies. This was done using several modification steps, which were the use of Antipodal technique for its advantages in reducing the complexity of the feeder network to achieve good matching with a standard 50-Ω SMA connector, bending the four corners of the arms and adding a triangular slot in each arm. The simulation was carried out using CST Microwave Studio to study the effect of each modification step on improving the bandwidth. The simulation results of the new antenna achieved a fractional bandwidth of 138% within the frequency range (1-5.45) GHz at the values of return loss (S11≤-10 dB). The new antenna was also fabricated, and the return loss was measured and showed a good agreement with the simulation results.
Citation
Osama Alali, Abdelrazak Badawieh, and Mohamad Alhariri, "Bandwidth Improvement of Bowtie Antenna for GPR Applications Using Antipodal Technique, Corner Bending, and Triangular Slot Modifications," Progress In Electromagnetics Research M, Vol. 106, 83-92, 2021.
doi:10.2528/PIERM21101001
References

1. Rhee, J. Y., K. T. Park, J. W. Cho, and S. Y. Lee, "A study of the application and the limitations of GPR investigation on underground survey of the Korean express ways," Remote Sensing, Vol. 13, No. 9, 1805, May 2021.
doi:10.3390/rs13091805

2. Nayak, R. and S. Maiti, "A review of bow-tie antennas for GPR applications," IETE Technical Review, Vol. 36, No. 4, 382-397, Jul. 2019.
doi:10.1080/02564602.2018.1492357

3. Sayidmarie, K. H. and Y. A. Fadhel, "A planar self-complementary bow-tie antenna for UWB applications," Progress In Electromagnetics Research C, Vol. 35, 253-267, 2013.
doi:10.2528/PIERC12103109

4. Dadgarpour, A., G. Dadashzadeh, M. Naser-Moghadasi, and F. Jolani, "Design and optimization of compact balanced antipodal staircase bow-tie antenna," Antennas Wirel. Propag. Lett., Vol. 8, 1135-1138, 2009.
doi:10.1109/LAWP.2009.2034282

5. Ali, J., N. Abdullah, M. Yusof, E. Mohd, and S. Mohd, "Ultra-wideband antenna design for GPR applications: A review," IJACSA, Vol. 8, No. 7, 2017.
doi:10.14569/IJACSA.2017.080753

6. Wu, Y., F. Shen, Y. Yuan, and D. Xu, "An improved modified universal ultra-wideband antenna designed for step frequency continuous wave ground penetrating radar system," Sensors, Vol. 19, No. 5, 1045, Mar. 2019.
doi:10.3390/s19051045

7. Ting, J., D. Oloumi, and K. Rambabu, "A miniaturized broadband bow-tie antenna with improved cross-polarization performance," AEU - International Journal of Electronics and Communications, Vol. 78, 173-180, Aug. 2017.
doi:10.1016/j.aeue.2017.04.016

8. Sagnard, F. and F. Rejiba, "Wide band coplanar waveguide-fed bowtie slot antenna for a large range of ground penetrating radar applications," IET Microw. Antennas Propag., Vol. 5, No. 6, 734, 2011.
doi:10.1049/iet-map.2010.0119

9. Nayak, R., S. Maiti, and S. K. Patra, "Design and simulation of compact UWB Bow-tie antenna with reduced end-fire reflections for GPR applications," 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 1786-1790, Chennai, India, Mar. 2016.
doi:10.1109/WiSPNET.2016.7566447

10. Awl, H. N., et al. "Bandwidth improvement in bow-tie microstrip antennas: The effect of substrate type and design dimensions," Applied Sciences, Vol. 10, No. 2, 504, Jan. 2020.
doi:10.3390/app10020504

11. Qu, S. and C. L. Ruan, "Effect of round corners on bowtie antennas," Progress In Electromagnetics Research, Vol. 57, 179-195, 2006.
doi:10.2528/PIER05072103

12. Shao, J., G. Fang, Y. Ji, and H. Yin, "Semicircular slot-tuned planar half-ellipse antenna with a shallow Vee-cavity in vital sign detection," IEEE J. Sel. to Appl. Earth Observations Remote Sensing, Vol. 7, No. 3, 767-774, Mar. 2014.
doi:10.1109/JSTARS.2014.2303197

13. Marsh, L. A., et al. "Combining electromagnetic spectroscopy and ground-penetrating radar for the detection of anti-personnel landmines," Sensors, Vol. 19, No. 15, 3390, Aug. 2019.
doi:10.3390/s19153390

14. Ajith, K. K. and A. Bhattacharya, "Printed compact lens antenna for uhf band applications," Progress In Electromagnetics Research C, Vol. 62, 11-22, 2016.
doi:10.2528/PIERC15112702

15. Li, K., T. Dong, and Z. Xia, "Improvement of bow-tie antenna for ground penetrating radar," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Guangzhou, China, May 2019.

16. Vijayalakshmi, J. and G. Murugesan, "Improved bandwidth and gain in ultra-wideband staircase antipodal bowtie antenna with rounded edge for microwave imaging applications," Appl. Math. Inf. Sci., Vol. 12, No. 6, 1197-1202, Nov. 2018.
doi:10.18576/amis/120614

17. Dastranj, A., "Design and implementation of a compact super-wideband printed antipodal antenna using fractal elements," Journal of Communication Engineering, Vol. 7, No. 1, 12, 2018.

18. Ganguly, D., Y. M. M. Antar, A. Somagani, and C. Saha, "Design of an antipodal bowtie array MIMO antenna for 5G mobile applications," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 421-422, Atlanta, GA, USA, Jul. 2019.

19. Li, M., C. Domier, X. Liu, and N. C. Luhmann, "Wide band MM-wave, double-sided printed bow-tie antenna for phased array applications," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2063-2064, Vancouver, BC, Canada, Jul. 2015.

20. Joula, M., V. Rafiei, and S. Karamzadeh, "High gain UWB bow-tie antenna design for ground penetrating radar application," Microw. Opt. Technol. Lett., 2018.

21. Balanis, C. A., Antenna Theory Analysis and Design, 4th Ed., Wiley, 2016.

22. Woo, D. S., Y. K. Cho, and K. W. Kim, "Balance analysis of microstrip-to-CPS baluns and its effects on broadband antenna performance," International Journal of Antennas and Propagation, Vol. 2013, 1-9, 2013.
doi:10.1155/2013/651040