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Bandwidth Improvement of Bowtie Antenna for GPR Applications
Using Antipodal Technique, Corner Bending,

and Triangular Slot Modifications

Osama Alali1, *, Abdelrazak Badawieh1, and Mohammad Alhariri2

Abstract—In this paper, the bandwidth of a bowtie antenna is improved to meet the requirements
of Ground Penetrating Radar (GPR) applications that need a fractional bandwidth greater than 100%
and are able to operate at low frequencies. This was done using several modification steps, which were
the use of Antipodal technique for its advantages in reducing the complexity of the feeder network to
achieve good matching with a standard 50-Ω SMA connector, bending the four corners of the arms, and
adding a triangular slot in each arm. The simulation was carried out using CST Microwave Studio to
study the effect of each modification step on improving the bandwidth. The simulation results of the
new antenna achieved a fractional bandwidth of 138% within the frequency range (1–5.45)GHz at the
values of return loss (S11 ≤ −10 dB). The new antenna was also fabricated, and the return loss was
measured and showed a good agreement with the simulation results.

1. INTRODUCTION

GPR systems are effective non-destructive tools which use transmission and reception of electromagnetic
waves to detect targets under different surfaces such as ground, water, ice, cement, and other propagation
media with different permittivities [1]. Antennas are an essential part of GPR systems, so they must
be designed to meet the requirements of these systems, such as the ability to work at low frequencies to
increase the depth of penetration and ability to work at high frequencies to achieve good resolution to
distinguish small-sized targets. Therefore, the design and development of UWB antennas are necessary
to increase the performance of GPR systems [2].

To classify systems according to their bandwidth, the fractional bandwidth (FBW) is defined by
the relationship in Eq. (1). Antennas can be considered ultra-wideband if they achieve a fractional
bandwidth of greater than 25% within the frequency range 3–11GHz [3–5], but GPR systems require
to achieve a fractional bandwidth greater than 100% [6], in addition to work at lower frequencies.

FBW = 2
fh− fl

fh+ fl
× 100% (1)

where Fh is the higher frequency, and Fl is the lower frequency in the bandwidth.
Bowtie antenna is widely used in GPR systems [2] due to its positive features such as small size and

weight, planar, low dispersion, low cost, good phase stability, easy modification, and easy fabrication [4].
However, the frequency bandwidth of the traditional bowtie antenna is not wide enough to be used
for GPR applications, so many researches added several modifications to overcome this drawback using
cutting edges of the arms [7, 8], rounding corners [9–11], resistive loading [6, 12–14], capacitive loading [6–
10, 13, 15], antipodal technique [4, 7, 16–19], and self-complementary technique [3, 20].
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In this paper, we will present a combination of several previous methods to study their impact on
improving the bandwidth of the traditional bowtie antenna, to get a new UWB bowtie antenna with
bandwidth greater than 100% that secures the requirements of GPR systems.

2. TRADITIONAL BOWTIE ANTENNA (TBA) DESIGN

TBA is formed from a two-dimensional geometric approximation of a biconical antenna, getting two
symmetrical triangular arms on one plane [6, 21] with two coplanar striplines (CPSs) for feeding from a
50-Ω SMA connector as shown in Figure 1.

Figure 1. TBA (Traditional Bowtie Antenna).

In this design, an FR4 substrate with dielectric constant (εr = 4.3), thickness (h = 1.6mm), and
loss tangent (δ = 0.025) was used. The antenna dimensions shown in Table 1 were designed based on
Equation (2) [5, 15] where λ is the wavelength for the minimum frequency f in the bandwidth which is
1GHz in our design.

L =
1.6λ0√

εr
(2)

The characteristic impedance Z of the TBA can be calculated from Equation (3) [6, 15, 21].

Z0 = 120 ln

(
cot

θ

4

)
(3)

where θ is the flare angle of the arms. Now TBA has θ = 63.9◦ and Z = 150Ω.

Table 1. Dimensions of TBA parameters at F = 1GHz.

Symbol Parameter Value [mm]

Lx Arm Length 110

Ly Arm Wide 137.2

L Antenna Length 223

X Substrate Length 235

Y Substrate Wide 158.6

S Gap 3

Hs CPS Length 80

W CPS Wide 2.8
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In the case of direct connection with the 50-Ω SMA connector ignoring the matching, the work of the
TBA will not be acceptable, but in the case of ideal connection with a 150-Ω virtual connector, the ideal-
TBA will operate within the frequency range (1.25–5.87)GHz for return loss values (S11 ≤ −10 dB).
Figure 2 shows the simulation results of the reflection coefficient S11 for the previous two cases using
CST Microwave Studio.

Figure 2. Matching effect on TBA and ideal-TBA bandwidth.

Practically, TBA needs a good matching between 150Ω and 50Ω. This can be achieved by adding a
feeder network as a Microstrip to CPS transition [21, 22], but that will lead to a reduction in bandwidth,
increasing antenna size and design complexity [3].

The proposed solution to overcome this problem is to use antipodal technique, which increases
the ability of TBA for matching without the need of this type of feeder network, thus eliminating the
limited bandwidth and increasing the possibility of applying the modifications in practical cases.

3. PROPOSED MODIFICATIONS FOR BANDWIDTH IMPROVEMENT

3.1. Antipodal Technique

To apply the antipodal technique on the TBA, one of the arms and its feed line were moved from
the front side to the back side of the substrate [16]. The bandwidth of Antipodal Traditional Bowtie
Antenna (A-TBA) had a perfect agreement with the bandwidth of TBA as shown in Figure 3.

The antipodal technique now allows for an adjustment of the gap between the arms where the arms
can be closer and overlapped in a way that could not be done in TBA with its CPS to achieve the
desired matching.

By the simulation of return loss of A-TBA (50Ω) for several fixed values of the gap S where
S = −2,−1, 0, 1, 2, 3, Figure 4 shows that none of these fixed values of the gap achieves the correct
work of the antenna. Therefore, the proposed solution was to use decreasing values of the gap from
Sstart = 1.8mm at the beginning of the arms to Send = 0mm within a region that can be called (Tapered
Gap) by converting the two feed lines to two tapered lines that meet oppositely on both sides at 50-
Ω port as shown in Figure 5. Now this antenna is called A-TGBA (Antipodal Tapered Gap Bowtie
Antenna).

The minimum width of the feeding line is 0.5mm at the arm, and the maximum is 4.8mm at the
port. This feeder network achieved the matching with 50-Ω port in the real part impedance as shown
in Figure 6 all over the bandwidth without the need for any additions that may increase the antenna
size.
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Figure 3. S11 parameter comparison between TBA & A-TBA.

Figure 4. Return loss simulation results for A-BTA (50Ω) with several fixed gap values.

Figure 5. Tapered gap using tapered feeder network.
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Figure 6. Real & imaginary part input impedance for A-TGBA.

Figure 7. Return loss for A-TGBA.

Simulation results of the reflection coefficient of the A-TGBA show that it operates in the frequency
range (1–4.29)GHz with frequency notch at (1.73–1.92)GHz and has S11 greater than −10 dB as shown
in Figure 7.

3.2. Corner Bending

The proposed modification here is to use bending of the four corners of the triangular arms to reduce
the reflection of the power [11], which leads to an additional increase in the bandwidth of the antenna,
called now Antipodal Bended Bowtie Antenna (A-BBA).

For several values of the corner bending radius (B = 0, 10, 20, 30mm), return loss simulation results
of the A-BBA show that the notch was eliminated and became below −10 dB as shown in Figure 8.
A-BBA worked within the bandwidth (1–5.24)GHz at B = 20mm which was a suitable choice.

3.3. Triangular Slot Loading

A triangular slot was added in each arm as shown in Figure 9(a) to form a new antenna called Antipodal
Slot Bended Bowtie Antenna (A-SBBA). Return loss simulation results in Figure 10 show an additional
improvement in the bandwidth, where A-SBBA worked within the bandwidth of (1–5.45)GHz at
(S11 ≤ −10 dB) with a fractional bandwidth of 138%. After testing several slot dimensions, the best
one had the dimensions shown in Figure 9(b). It can be clearly noticed that the bandwidth of the A-
SBBA is similar to the previous ideal-TBA assumption and shown in Figure 2 achieving better reflection
coefficient values and lower frequency, which is better for GPR applications.
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Figure 8. A-BBA bandwidth.

(b)(a)

Figure 9. (a) A-SBBA geometry. (b) Triangle slot dimensions.

Figure 10. Comparison between A-SBBA and ideal-TBA bandwidth.

The radiation efficiency of A-SBBA is (60–97)%, and the gain is (2.2–4.2) dB for the overall
frequency range. The three-dimensional radiation pattern of the A-SBBA was compared with the
Ideal-TBA at the frequency 1.5GHz. Figure 11 shows a very good agreement between them with a
slight decrease in the directivity of the A-SBBA due to the bended corners. The A-SBBA achieves
a maximum directivity of 4.24 dBi towards the direction of the earth in GPR applications, while the
maximum directivity for the ideal-TBA was 4.52 dBi, and maximum gain was for the same direction.
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(a) A-SBBA (b) Ideal-TBA

Figure 11. 3D Radiation pattern at F=1.5 GHz (a) for A-SBBA, (b) for Ideal-TBA.

4. RESULTS AND DISCUSSION

The new antenna (A-SBBA) was fabricated as shown in Figure 12. The return loss was measured
using a ROHDE & SCHWARZ FSH20 vector Network Analyzer. Figure 13 shows that the antenna
bandwidth at S11 ≤ −10 dB operated within (1–6)GHz, so it achieved 142.8% fractional bandwidth in
good agreement with the simulation results, which was 138%.

The simulation and implementation results can be summarized in Table 2, which shows the effect
of each modification step performed in this paper on the bowtie antenna bandwidth.

Figure 12. A-SBBA fabrication.

Figure 13. Bandwidth comparison between simulation and measurement results for A-SBBA.
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Table 2. The effect of modifications on bowtie antenna bandwidth.

Antenna Type
Bandwidth GHz for

S11 ≤ −10 dB

Fractional

Bandwidth (FBW) %

Ideal-TBA (150Ω) 1.25–5.87 129.7%

TBA (50 Ω) × ×
Ideal A-TBA (150Ω) 1.25–5.87 129.7%

A-TBA (50Ω) × ×

A-TGBA
1–4.29

With Notch (1.73–1.92)

124.4%

Ignoring the notch

A-BBA 1–5.24 135.9%

A-SBBA 1–5.45 138%

Fabricated A-SBBA 1–6 142.8 %

Table 3 shows a comparison of the bandwidth achieved in this work with other works done to
improve the bandwidth of the bowtie antenna.

Table 3. Comparison between previous works and this work.

Ref
Using Techniques for

Bowtie Antenna

Simulated

BW in GHz

Simulated

FBW %

Measured

BW in GHz

Measured

FBW %

[6]

2019

Lumped resistive loading,

capacitive loading,

cutting edges and

cavity reflector.

0.64–2 103% 0.64–2.2 109%

[7]

2017

Double-sided arms

and rectangular slots.
2–5 85.7% 2–5 85.7%

[8]

2011

CPW-Fed, slot arms

with sharp corners

and two metal stubs.

0.4–1.5 115.8% 0.4–1.5 115.8%

[9]

2016

Similar to Ref. [8] but

using rounded corners

and resistivity loading

by graphite sheet.

1.3–4.5 110% – –

[14]

2016

Resistive loading

and Metamaterial Lens.
0.3–3 163.6% 0.3–3 163.6%

[20]

2018
Self-complementary. 0.98–4.5 128.5% 0.98–4.5 128.5%

This

work

Antipodal technique,

bended corners

and triangular slot.

1–5.45 138% 1–6 142.8%

We find that our design, which is characterized by simplicity, has achieved better fractional
bandwidth than most of them except [14] which made its improvement in complexity.
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5. CONCLUSION

In this paper, the bandwidth of a bowtie antenna was improved for GPR applications using antipodal
technique, corner bending, and a triangular slot in each arm. The effect of each modification step
on improving the bandwidth was investigated, and finally a new antenna was obtained that achieved a
fractional bandwidth of 138% within the frequency range (1–5.45)GHz that is suitable for GPR systems.
The new antenna was fabricated, and return loss was measured. The fabricated antenna (A-SBBA)
worked in the frequency range (1–6)GHz with a fractional bandwidth of 142.8%. The effect of the
modifications on the electrical and radiation characteristics of this antenna will be the focus of research
in future work.
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