Vol. 106
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-11-26
Optimal Magnetic Wake Detection in Finite Depth Water
By
Progress In Electromagnetics Research M, Vol. 106, 25-34, 2021
Abstract
Seawater is generally considered as an electrical conductor with rather weak electrical conductivity. As a moving electrical conductor in an electromagnetic field, seawater motions induce weak electromagnetic field in surrounding environment. The movement of vessels in seawater leads to the variations of electromagnetic field pattern, called as magnetic wake. In order to detect a moving object through the induced magnetic wake, a magnetometer can be placed under the seawater surface. In this paper, we present a mathematical model through which we can study the magnetic wake in water of finite depth and, explore its behavior with respect to environmental parameters and geometric characteristics of the moving object. More specifically, we show through mathematical expressions and numerical results that there always exists an optimal depth under the sea surface wherein if amagnetometer isplaced, maximum amplitude of magnetic wake can be captured. Several key properties are verified for the optimal magnetic wake detection through numerical results. Firstly, the optimal depth is increased by increasing the speed of the moving vessel. Secondly, the optimal depth is not influenced considerably by the variation of sea depth, and thirdly, in the case wherethe Froude number of the vessel is lower than 0.5, the optimal depth is below 15 m.
Citation
Mohammad-Amir Fallah, and Mehdi Monemi, "Optimal Magnetic Wake Detection in Finite Depth Water," Progress In Electromagnetics Research M, Vol. 106, 25-34, 2021.
doi:10.2528/PIERM21091504
References

1. Mizutani, N. and T. Kobayashi, "Magnetic field vector detection in frequency domain with an optically pumped atomic magnetometer," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4096-4099, Nov. 2012.
doi:10.1109/TMAG.2012.2200657

2. Han, F., S. Harada, and I. Sasada, "Fluxgate and search coil hybrid: A low-noise wide-band magnetometer," IEEE Transactions on Magnetics, Vol. 48, No. 11, 3700-3703, Nov. 2012.
doi:10.1109/TMAG.2012.2196762

3. Wang, Z., M. Deng, K. Chen, M. Wang, Q. Zhang, and D. Zeng, "Development and evaluation of an ultralow-noise sensor system for marine electric field measurements," Sensors and Actuators A: Physical, Vol. 213, 70-78, 2014, ISSN0924-4247, https://doi.org/10.1016/j.sna.2014.03.026.
doi:10.1016/j.sna.2014.03.026

4. Han, F., S. Harada, and I. Sasada, "Fluxgate and search coil hybrid: A low-noise wide-band magnetometer," IEEE Transactions on Magnetics, Vol. 48, 3700-3703, 2012.
doi:10.1109/TMAG.2012.2196762

5. Kawai, J., G. Uehara, T. Kohrin, H. Ogata, and H. Kado, "Three axis SQUID magnetometer for low-frequency geophysical applications," IEEE Transactions on Magnetics, Vol. 35, 3974-3976, 1999.
doi:10.1109/20.800726

6. Chen, Y. F., P. Wu, W. Zhu, and G. Fang, "An innovative magnetic anomaly detection algorithm based on signal modulation," IEEE Transactions on Magnetics, Vol. 56, No. 9, 1-9, Sept. 2020, Art no. 6200609, doi: 10.1109/TMAG.2020.3005896.

7. Zhou, J., J. Chen, and Z. Shan, "Spatial signature analysis of submarine magnetic anomaly at low altitude," IEEE Transactions on Magnetics, Vol. 53, No. 12, 1-7, Dec. 2017, Art no. 6001107, doi: 10.1109/TMAG.2017.2735940.
doi:10.1109/TMAG.2017.2735940

8. Newman, J. N., Marine Hydrodynamics, MIT Press, 1977.
doi:10.7551/mitpress/4443.001.0001

9. Gu, D. F. and O. M. Phillips, "On narrow V-like ship wakes," J. Fluid Mech., Vol. 275, 301-321, 1988.

10. Kostyukov, A. A., Theory of Ship Waves and Waves Resistance, 241-243, Effective Communications Inc., 1968.

11. Gilman, M., A. Soloviev, and H. Graber, "Study of the far wake of a large ship," J. Atmos. Oceanic Technol., Vol. 28, 720-733, 2011.
doi:10.1175/2010JTECHO791.1

12. Weaver, J. T., "Magnetic variations associated with ocean waves and swell," Journal of Geophysical Research, Vol. 70, 1921-1929, 1965.
doi:10.1029/JZ070i008p01921

13. Sanford, T. B., "Motionally induced electric and magnetic fields in the sea," Journal of Geophysical Research, Vol. 76, 3476-3492, 1971.
doi:10.1029/JC076i015p03476

14. Madurasinghe, D., "Induced electromagnetic fields associated with large ship wakes," Wave Motion, Vol. 20, 283-292, 1994.
doi:10.1016/0165-2125(94)90053-1

15. Madurasinghe, D. and E. O. Tuck, "The induced electromagnetic field associated with submerged moving bodies in an unstratified conducting fluid," IEEE Journal of Ocean Engineering, Vol. 19, 193-199, 1994.
doi:10.1109/48.286641

16. Madurasinghe, D. and G. R. Haack, "The induced electromagnetic field associated with wakes-signal processing aspects," Proceedings of IGRASS, Vol. 94, 2335-2357, Pasadena, CA, 1994.

17. Zou, N. and A. Nehorai, "Detection of ship wakes using an airborne magnetic transducer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 1, 532-539, Jan. 2000, doi: 10.1109/36.823948.
doi:10.1109/36.823948

18. Fallah, M. A. and H. Abiri, "Electromagnetic fields induced by the motion of Di-Hull bodies in a conducting fluid," IEEE Transactions on Magnetics, Vol. 49, No. 10, 5257-5263, Oct. 2013, doi: 10.1109/TMAG.2013.2260345.
doi:10.1109/TMAG.2013.2260345

19. Guo, X., D. Zhao, and Z. Cao, "Detection of the magnetic field induced by the wake of a moving submerged body using simple models," American Journal of Electromagnetics and Applications, Vol. 4, No. 2, 20-25, 2016, doi: 10.11648/j.ajea.20160402.12.

20. Chaillout, J. J., J. Berthier, and R. Blanpain, "Modelling of electromagnetic wakes of moving submerged bodies in stratified sea water," IEEE Transactions on Magnetics, Vol. 32, No. 3, 998-1001, May 1996, doi: 10.1109/20.497408.
doi:10.1109/20.497408

21. Yaakobi, O., G. Zilman, and T. Miloh, "Detection of the electromagnetic field induced by the wake of a ship moving in a moderate sea state of finite depth," J. Engrg. Math., Vol. 70, 17-27, 2011.
doi:10.1007/s10665-010-9410-z

22. Amir Fallah, M. and H. Abiri, "Multi-sensor approach in vessel magnetic wake imaging," Wave Motion, Vol. 51, 60-76, 2014.
doi:10.1016/j.wavemoti.2013.06.004

23. Xu, Z., C. Du, and M. Xia, "Evaluation of electromagnetic fields induced by wake of an undersea-moving slender body," IEEE Access, Vol. 6, 2943-2951, 2018, doi: 10.1109/ACCESS.2017.2786246.
doi:10.1109/ACCESS.2017.2786246

24. Xu, Z. H., C. P. Du, and M. Y. Xia, "Electromagnetic fields due to the wake of a moving slender body in a finite-depth ocean with density stratification," Sci. Rep., Vol. 8, 14647, 2018, https://doi.org/10.1038/s41598-018-32789-1.
doi:10.1038/s41598-018-32789-1

25. Robert, P., Electrical and Magnetic Properties of Materials, Artech House, 1988.

26. Schon, J. H., "Physical properties of rocks: Fundamentals and principles of petrophysics Calculated from field data at Otis MMR," Cape Cod, Massachusetts, 1996.

27. Mavko, G., The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge University Press, 1998.

28. Carmichael, R. S., Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, 1989.