Vol. 101
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-10-29
Design of a Novel Microwave Plasma Source Based on Ridged Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 101, 19-27, 2021
Abstract
The tapered waveguide as a microwave plasma excitation structure is widely used in the industrial field. However, it needs high input microwave power to ignite and sustain plasma because its electric field is not sufficiently focused in the discharge area. In order to solve this problem, this paper proposes a novel microwave plasma source based on a ridged waveguide. The structure of the proposed microwave plasma source is optimized to focus the electric field in the discharge region by electromagnetic calculations before the plasma excitation. Then, the equivalent circuit model is used to analyze the impedance matching characteristics of the novel device after the plasma excitation. In order to validate this device, a microwave plasma system is built to measure the plasma exciting power and sustaining power in both air and argon at atmospheric pressure. The simulation and experiment are carried out in both tapered waveguide and the proposed device. Simulation results show the electric field of the ridged waveguide is 1.9 times of that of the tapered waveguide when the input power is 1500 W. Moreover, in the experiments, the exciting power and sustaining power of the air and argon plasma in the novel device are lower than those of the tapered waveguide at different gas flow rates.
Citation
Pingping Deng, Wei Xiao, Fengxia Wang, and Zhengping Zhang, "Design of a Novel Microwave Plasma Source Based on Ridged Waveguide," Progress In Electromagnetics Research Letters, Vol. 101, 19-27, 2021.
doi:10.2528/PIERL21082501
References

1. Jaeho, K., O. Hiroyuki, and K. Makoto, "Control of plasma-dielectric boundary sheath potential for the synthesis of carbon nanomaterials in surface wave plasma CVD," IEEE Transactions on Plasma Science, Vol. 43, No. 1, 480-484, 2015.
doi:10.1109/TPS.2014.2370040

2. Moon, S. Y., J. W. Han, and W. Choe, "Feasibility study of material surface treatment using an atmospheric large-area glow plasma," J. Thin Solid Films, Vol. 506, 355-359, May 2006.
doi:10.1016/j.tsf.2005.08.081

3. Laroussi, M., "Sterilization of contaminated matter with an atmospheric pressure plasma," IEEE Transactions on Plasma Science, Vol. 24, No. 3, 1188-1191, 2002.
doi:10.1109/27.533129

4. Hiro, K., Plasma Electronic Engineering, OHM & Science Press, Beijing, China, 2002.

5. Moon, S. Y., W. Choe, H. S. Uhm, et al. "Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube," J. Physics of Plasmas, Vol. 9, No. 9, 4045-4051, 2002.
doi:10.1063/1.1495872

6. Zhao, Q., S. Z. Liu, and H. H. Tong, Plasma Technology and Its Applications, National Defence Industry Press, Beijing, 2009.

7. Zheng, Z., Z. Chen, P. Liu, et al. "Study on Argon plasma jets at atmospheric pressure in ambient air excited by surface waves," IEEE Transactions on Plasma Science, Vol. 24, No. 4, 911-916, 2014.
doi:10.1109/TPS.2013.2295837

8. Levko, D., A. Sharma, and L. L. Raja, "Plasmas generated in bubbles immersed in liquids: Direct current streamers versus microwave plasma," Journal of Physics D: Applied Physics, Vol. 49, No. 28, 285205, 2016.
doi:10.1088/0022-3727/49/28/285205

9. Chapman, A., W. Luo, et al. "Plasma generation by dielectric resonator arrays," Plasma Sources Science & Technology, 2016.

10. Yang, Y., W. Hua, and S. Y. Guo, "Numerical study on microwave-sustained argon discharge under atmospheric pressure," Physics of Plasmas, Vol. 21, No. 4, 7-963, 2014.
doi:10.1063/1.4872000

11. Baeva, M., et al. "Pulsed microwave discharge at atmospheric pressure for NOx decomposition," Plasma Sources Science & Technology, 2002.

12. Kim, H. J., J. J. Choi, and J. M. Hong, "Uniform long-slit microwave plasma generation from a longitudinal-section electric mode coupling," IEEE Transactions on Plasma Science, Vol. 34, No. 4, 1576-1578, 2006.
doi:10.1109/TPS.2006.878995

13. Kabouzi, Y., D. B. Graves, E. Castanos-Martinez, and M. Moisan, "Modeling of atmospheric- pressure plasma columns sustained by surface waves," Phys. Rev. E, Vol. 75, 016402, 2007.
doi:10.1103/PhysRevE.75.016402

14. Chaichumporn, C., P. Ngamsirijit, N. Boonklin, et al. "Design and construction of 2.45 GHz microwave plasma source at atmospheric pressure," Procedia Engineering, Vol. 8, 94-100, 2011.
doi:10.1016/j.proeng.2011.03.018

15. Kuo, S. P., D. Bivolaru, H. Lai, et al. "Characteristics of an arc-seeded microwave plasma torch," IEEE Transactions on Plasma Science, Vol. 32, No. 4, 1734-1741, 2015.
doi:10.1109/TPS.2004.832517

16. Zhang, D., R. Zhou, X. Q. Yang, et al. "Design of novel dual-port tapered waveguide plasma apparatus by numerical analysis," Physics of Plasmas, Vol. 23, No. 7, 2016.

17. Abdel-Fattah, E., H. Shindo, R. Sabry, and A. El Kotp, "Experimental and numerical investigations of line-shaped microwave argon plasma source," Progress In Electromagnetics Research M, Vol. 43, 183-192, 2015.
doi:10.2528/PIERM15071004

18. Moisan, M., Z. Zakrzewski, R. Pantel, et al. "A waveguide-based launcher to sustain long plasma columns through the propagation of an electromagnetic surface wave," IEEE Transactions on Plasma Science, Vol. 12, No. 3, 203-214, 1984.
doi:10.1109/TPS.1984.4316320

19. Iio, S., K. Yanagisawa, C. Uchiyama, et al. "Influence of gas flow on argon microwave plasma jet at atmospheric pressure," Surface & Coatings Technology, Vol. 206, No. 6, 1449-1453, 2011.
doi:10.1016/j.surfcoat.2011.09.013

20. Zhang, W., L. Wu, J. Tao, et al. "Numerical investigation of the gas ow effects on surface wave propagation and discharge properties in a microwave plasma torch," IEEE Transactions on Plasma Science, Vol. 47, No. 1, 271-277, 2019.
doi:10.1109/TPS.2018.2882637

21. Pozar, A. D. M., Microwave Engineering, Publishing House of Electronics Industry, Beijing, 2019.

22. Fleisch, T., Y. Kabouzi, M. Moisan, et al. "Designing an efficient microwave-plasma source, independent of operating conditions, at atmospheric pressure," Plasma Sources Science & Technology, Vol. 16, No. 1, 173, 2006.
doi:10.1088/0963-0252/16/1/022

23. Miotk, R. and M. Jasinski, "Investigation of the electrodynamic characteristics of 2.45 GHz microwave plasma sheet source," IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2019.

24. Miotk, R., M. Jasinski, and J. Mizeraczyk, "Improvement of energy transfer in a cavity-type 915- MHz microwave plasma source," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 2, 711-716, 2018.
doi:10.1109/TMTT.2017.2778068

25. Kim, J. D., H. K. Sang, H. J. Kim, et al. "Impedance measurement system for a microwave-induced plasma," Journal of the Korean Physical Society, Vol. 60, No. 6, 907-911, 2012.
doi:10.3938/jkps.60.907

26. Mitsugi, F., T. Ohshima, H. Kawasaki, et al. "Gas flow dependence on dynamic behavior of serpentine plasma in gliding arc discharge system," IEEE Transactions on Plasma Science, Vol. 42, No. 12, 3681-3686, 2014.
doi:10.1109/TPS.2014.2363653

27. Gurel, C. S. and E. Oncu, "Interaction of electromagnetic wave and plasma slab with partially linear and sinu-soidal electron density profile," Progress In Electromagnetics Research Letters, Vol. 12, 171-181, 2009.
doi:10.2528/PIERL09061707

28. Miotk, R., M. Jasinski, and J. Mizeraczyk, "Equivalent circuit of a coaxial-line-based nozzleless microwave 915MHz plasma source," IOP Conference, 113, 2016.

29. Miotk, R., "Equivalent circuit of a microwave plasma source for hydrogen production from liquid substances," Przeglad Elektrotechniczny, Vol. 1, No. 8, 31-34, 2016.
doi:10.15199/48.2016.08.08

30. Nowakowska, H., M. Jasinski, and J. Mizeraczyk, "Modelling of discharge in a high-flow microwave plasma source (MPS)," European Physical Journal D, Vol. 67, No. 7, 1-8, 2013.
doi:10.1140/epjd/e2013-30514-y