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Design of a Novel Microwave Plasma Source Based on Ridged
Waveguide
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Abstract—The tapered waveguide as a microwave plasma excitation structure is widely used in the
industrial field. However, it needs high input microwave power to ignite and sustain plasma because
its electric field is not sufficiently focused in the discharge area. In order to solve this problem, this
paper proposes a novel microwave plasma source based on a ridged waveguide. The structure of the
proposed microwave plasma source is optimized to focus the electric field in the discharge region by
electromagnetic calculations before the plasma excitation. Then, the equivalent circuit model is used
to analyze the impedance matching characteristics of the novel device after the plasma excitation. In
order to validate this device, a microwave plasma system is built to measure the plasma exciting power
and sustaining power in both air and argon at atmospheric pressure. The simulation and experiment
are carried out in both tapered waveguide and the proposed device. Simulation results show the electric
field of the ridged waveguide is 1.9 times of that of the tapered waveguide when the input power is
1500W. Moreover, in the experiments, the exciting power and sustaining power of the air and argon
plasma in the novel device are lower than those of the tapered waveguide at different gas flow rates.

1. INTRODUCTION

Microwave plasma is widely used in industrial fields, such as nanomaterial synthesis, material surface
treatment, and sterilization [1–4] due to the advantages of high electron and gas temperature, a wide
range of working pressure, and no electrodes [5, 6]. Many researchers have obtained microwave-induced
plasma by the tapered waveguide [7–9]. For example, Yang et al. used a tapered waveguide to conduct a
numerical study on the continuous discharge of argon under atmospheric pressure [10]. A configuration
based on a high-quality cylindrical resonator was presented by Baeva et al. [11]. Here, the microwave
is coupled via a tapered rectangular waveguide to the high-quality cylindrical resonator. Kim et al.
studied long-slit microwave plasma through tapered waveguides [12].

However, current tapered waveguide mainly enhances the electric field through the compression
of the narrow side of the waveguide [9, 13, 14]. The inadequate electric field focusing of the structure
results in higher energy consumption. Specifically, the plasma’s exciting power and sustaining power
are relatively high [10, 15]. Recently, improved models of tapered waveguides have been reported. For
example, Zhang et al. proposed a dual-port tapered waveguide structure [16]. A line-shaped microwave
plasma source was proposed by Abdel-Fattah et al. [17]. Moisan et al. presented a waveguide-based
launcher (surfaguide) that can efficiently generate and sustain long plasma columns [18]. However,
in these structures, the insufficient electric field focusing and high energy consumption of the tapered
waveguide are still not fully solved. Therefore, this paper proposes a novel microwave plasma source
(MPS) based on a ridged waveguide to solve this problem. In tapered waveguide and ridged waveguide,
the electric field is mainly focused in the discharge area and reaches the maximum value there. In the
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simulation, the maximum electric field values of the tapered waveguide and the ridged waveguide are
respectively 6.76 × 104V/m and 1.33 × 105V/m when the input power is 1500W. In the experiment,
the energy consumption of the devices is analyzed emphatically. The main method of our analysis
is to compare the exciting power and sustaining power of the plasma of these two devices. Air and
argon are used as working gases. Under atmospheric pressure, these two parameters can be measured
at different gas flow rates [19, 20]. Lower power value (exciting power; sustaining power) shows lower
energy consumption required by the plasma source. It is worth noting that the experimental results
show that compared with the traditional tapered waveguide, the plasma exciting power and sustaining
power of the ridged waveguide are lowered by 27.5% and 30%, respectively. This is consistent with that
the maximum electric field value of the ridged waveguide is 1.9 times of that of the tapered waveguide
in the electric field simulation. Therefore, the required energy consumption for plasma exciting and
sustaining of the ridged waveguide is lower. To the best of the authors’ knowledge, this structure has
never been used as an MPS.

2. OPTIMIZATION OF THE DEVICE

2.1. Structure Description

To maximize the electric field intensity of the discharge area, the dimensions of the ridged waveguide
have been optimized to the best value. The specifications are shown in Table 1. Due to a large number
of parameters, this paper only focuses on the three parameters that have a great impact on the electric
field intensity. They are the wide side (G), the half-length of the narrow side (H) of the resonant cavity,
and the height of the metal ridge (N). As shown in Figs. 1(a), (b), and (c), we can conclude that the
electric field intensity varies with the sizes of the device and reaches a maximum value at a certain
position. Therefore, this size is optimal. The optimal dimensions of the wide side (G), the half length of
the narrow side (H) of the resonant cavity, and the height (N) of the metal ridge are 87mm, 42.5mm,
and 10mm, respectively. Fig. 2 is a cross-sectional view of the waveguide of the final structure. It is
based on the standard rectangular waveguide BJ22, which is short-circuited at the end. The operating
frequency of incident microwaves is 2.45GHz. The total length of the structure is designed to be 156mm.
In the discharge area, a quartz tube with an inner diameter of 26mm and an outer diameter of 28mm
passes through the center of the wide wall of the waveguide.

Table 1. Explanation of each size of the proposed microwave plasma source.

Symbol Name Physical Meaning Length (mm)

A Height of the transition section 54

B Half Width of the transition section 50

α Slant angle of the transition section 27◦

F Length of the ridge 29

G Length of the cavity 87

R1 Outer diameter of the quartz tube 28

R2 Inner diameter of the quartz tube 26

H half width of the cavity 42.55

I Height of the cavity 34

M Width of the ridge 50

N Height of the ridged 10

O Height of the impedance matching segment 34

V Width of the impedance matching segment 68.4
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Figure 1. The maximum electric field intensity changes with the dimensions of the ridged waveguide:
(a) Length of G, (b) length ofH, (c) length ofN ; (d) fitting the experimentally described electrodynamic
characteristics to the analytical ones [18].

(a) (b)

Figure 2. Cross-sectional view of the ridged waveguide. (a) X-Z cross section, (b) Y -Z section.
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2.2. Simulation Method before Plasma Excitation

Before experiments, a three-dimensional (3D) electromagnetic model is built by the commercial software
COMSOLMultiphysics. In our calculations, a mesh with 280 644 elements has been used. The simulated
model is optimized to the best dimensions to maximize the electric field in the discharge area of the
device. The microwave field of the discharge tube is observed intuitively and compared exactly with each
other. Fig. 4(b) shows the optimized electric field distribution of the device before plasma excitation.
The Helmholtz equation is used to describe the electric field E,

∇×
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r ∇× E

)
− k20

(
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)
E = 0 (1)

where µr is the relative permeability (usually equals 1), k0 the free-space wave number, εr the real part
of the permittivity of the medium, and its value is 4.2; σ represents the conductivity, and its value is 0;
ε0 is the permittivity of vacuum, and ω is the incident electromagnetic wave’s angular frequency.

2.3. Equivalent Circuit Model after Plasma Excitation

After this structure was optimized by three-dimensional electromagnetic simulation, the electric field
in the discharge area reached its maximum value. In order to analyze the impedance matching of the
proposed device after plasma excitation, an equivalent circuit model is adopted, which is shown in Fig. 3.
The equivalent circuit of the microwave plasma source contains a two-port network. In this equivalent
circuit, the part of the ridged waveguide transmission line is equivalent to the parallel connection of
impedance Z1, inductance LA, and capacitance C. The plasma current effect is equivalent to the series
connection of inductance LB and impedance Z2, and then parallel to resistance R. In this way, an
equivalent circuit of a microwave plasma source containing plasma is formed, as shown in Fig. 3. It is
calculated using the Advanced Design System (ADS) simulation tool and using the ABCD-matrix &
S-parameter convergence [21].

Figure 3. Diagram of the equivalent electrical circuit of the MPS.

3. RESULT AND DISCUSSION

3.1. Simulation Results

As shown in Fig. 4(a), in the electric field simulation part, the electric field distribution of the tapered
waveguide was also simulated. The same calculations were performed for the tapered waveguide and
ridged waveguide. When the port excitation is 1500W and the operating frequency is 2.45GHz, the
maximum electric field intensities of the tapered waveguide and ridged waveguide are 6.76 × 104V/m
and 1.33×105V/m, respectively (Fig. 4). We can conclude that the electric field intensity of the second
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Figure 4. Distributions of the electric field intensity (V/m) in two apparatuses: (a) the tapered
waveguide, (b) the ridged waveguide.

waveguide is 1.9 times of that of the first waveguide. Therefore, the performance of the ridged waveguide
is better than that of the tapered waveguide in the 3D electromagnetic simulation.

As shown in Fig. 4(b), when the working gas is introduced, the high electric field intensity of the
ridged waveguide in the discharge area will excite the gas into plasma. The plasma impedance is a key
issue of the atmospheric pressure microwave plasma source, and the plasma impedance is the main factor
that controls the power transmission from the microwave generator to the plasma source. Therefore,
it is important to study the plasma impedance in an atmospheric pressure plasma source excited
by microwaves. In [22], by simulating the electromagnetic field distribution of the ridged waveguide
plasma source, using the method described in [23–25], it was determined that Z1 = 56 + j ∗ 124Ω,
LA = 4nH, C = 2pF. During the experiment, we found that the plasma impedance was related to the
gas composition and flow rate of the gas. After the gas composition is determined, different gas flow
rates correspond to different plasma impedances [26], and the corresponding scattering-parameter (S11)
is also different, which describes the electrodynamic characteristics of the MPS. Therefore, the unknown
elements R, LB, and Z2 could be determined by fitting the experimentally described electrodynamic
characteristics to the analytical ones. An example of such a fitting is presented in Fig. 1(d). It can be
seen from Fig. 1(d) that the scattering-parameter (S11) values [27] of air and argon at different flow
rates can fit well with the characteristic curve corresponding to the specific value of R, LB, Z2. For
resistance R = 75Ω, inductance LB = 2nH, and impedance Z2 = 80 − j ∗ 50Ω satisfied the good
fitting in the entire range of the argon flow rate. At the same time, Fig. 1(d) also shows that when
the resistance R = 168Ω, the inductance LB = 14nH, and the impedance Z2 = 75 − j ∗ 30Ω. It also
achieved good fitting in the entire range of the air flow rate. They correspond to the plasma part of the
circuit of other microwave plasmas [28, 29].

3.2. Experiment Results

Figure 5 shows photographs of the manufactured product. The microwave plasma source consists of
a 2.45GHz microwave generator of maximum power 3000W and a TE10 model rectangular waveguide
connected to a customized ridged waveguide using a BJ22 waveguide. The reflected power is deflected
by the ferrite circulator to the water load connected to the third port of the circulator. The bidirectional
coupler and AV2433 microwave power meter are used to couple and measure the incident and reflected
power, respectively. As gas flow meters, KT-C4Z Intelligent Gas Supply System and DK800-6 Glass
Rotameter can respectively provide air and argon at different flow rates. Two hollow hoses that conduct
air in opposite directions are used to sustain the vortex. Generally, this vortex helps stabilize the plasma
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Figure 5. Photograph of the ridged waveguide: (a) side view, (b) cross-sectional view.

Figure 6. Photograph of the experimental set-up.

torch, especially at high gas flow rates [30]. In addition, it can also protect the quartz tube from thermal
damage caused by the high temperature of the plasma.

In the experiment, air plasma and argon plasma’s minimum exciting power and sustaining power
can be obtained at different gas flow rates. Before the experiment, we prepared a sharp-ended copper
wire to provide seed electrons in the discharge area to ignite the plasma. A schematic drawing of the
experimental setup is shown in Fig. 6.

3.2.1. Exciting Power

The exciting power is measured here. We introduced 180L/h of air, and the incident power of 500W
was gradually increased at intervals of 50W. As the power value increases, the air in the discharge tube
will be excited into plasma at a certain power value. The power value at this moment is recorded as the
minimum exciting power. Repeat the measurement at all flow rates of 180, 300, 540, 600, 900, 1080,
1200, 1500L/h. Because the flow meters of argon is DK800-6 Glass Rotameter, for the convenience
of choosing the value, the flow rate of argon is respectively taken as 180, 500, 800, 1000, 1200, 1500,
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Figure 7. (a), (b) Variation of exciting power with flow rate of air and argon respectively; (c), (d)
variation of sustaining power with flow rate of air and argon, respectively.

1600, 1800L/h. Equal measurement operations have been done for the argon. The results are shown
in Figs. 7(a), (b). We can see that as the gas flow rate increases, the plasma’s exciting power also
increases. It is worth noting that whether air or argon is used as the working gas, the power value in
the ridged waveguide is significantly lower than that in the tapered waveguide. The former is about
27% lower than the latter. There are potential applications in some gas processing industries because
ridged waveguides consume less energy at the same flow rate.

3.2.2. Sustaining Power

In our further work, after the plasma was excited, we measured the plasma sustaining power of air and
argon at different flow rates. After the plasma is excited at a certain flow rate, the power is gradually
reduced. The accompanying phenomenon is that the plasma torch becomes smaller and smaller until it
goes out. The power value at the previous moment is recorded as the minimum sustaining power. As
shown in Figs. 7(c), (d), as the gas flow rate increases, the increasing trend of the sustaining power is
the same as the excitation power. Moreover, we can still see that whether air or argon is used as the
working gas, the sustaining power value of the ridged waveguide is significantly lower than that of the
tapered waveguide. The first waveguide is 30% lower than the second waveguide. This is very consistent
with our previous simulation results.
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4. CONCLUSION

In this paper, we propose a novel type of microwave plasma source based on ridged waveguide. Three-
dimensional electromagnetic simulations show that the maximum electric field intensity of the ridged
waveguide is 1.9 times of that of the tapered waveguide. The electric field of the ridged waveguide
is more fully concentrated in the discharge area than the tapered waveguide. Two experiments were
performed to measure the minimum excitation power and sustaining power of the plasma. One result
shows that the gas in the proposed device can be excited into plasma at relatively low power compared
with the traditional tapered waveguide. The plasma excitation power of the ridged waveguide is 27.5%
lower than that of the tapered waveguide. Another result shows that after plasma excitation, the plasma
sustaining power of the novel device is significantly lower than that of the traditional tapered waveguide
at the same gas flow rate. The plasma sustaining power of the former is 30% lower than that of the
latter. This is consistent with the simulation results of the three-dimensional electromagnetic field. The
required energy consumption for plasma exciting and sustaining of the ridged waveguide is lower. This
means that in exhaust gas treatment, the plasma generated in the proposed device can treat a larger
amount of exhaust gas per unit of power. Therefore, it has a broader application prospect.
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