Vol. 94
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-10-20
Enhancing Detection Performances of Nonhomogeneous Weibull Clutter by Knowledge Based Systems Exploitation
By
Progress In Electromagnetics Research B, Vol. 94, 53-74, 2021
Abstract
This article aims to study the behavior of Constant False Alarm Rate (CFAR) detectors for a heterogeneous Weibull clutter and its derivatives. CFAR architectures based on exploitation of the Combined Environmental Knowledge Base (CEKB) have been proposed, called Knowledge Based Systems-Maximum Likelihood-CFAR (KBS-ML-CFAR) and KBS-Log-t-CFAR for nonhomogeneous Weibull clutter at general parameters. A CFAR architecture that uses Geographic Information System (GIS) as a Knowledge Base (KB), called KBS-Forward Automatic Order Selection Ordered Statistics-CFAR (KBS-FAOSOS-CFAR) has been proposed for special Weibull parameters. The performances of the proposed detectors have been studied and analyzed by conducting MATLAB simulations. The simulation results show that the KBS-CFAR based on CEKB outperforms the ML and Log-t-CFAR in terms of clutter edge detection capability in nonhomogeneous Weibull clutter case. Compared with other KB, this KBS-CFAR based on CEKB performs well to preserve the probability of false alarm (Pfa) at a desired constant value. For special Weibull parameters, the proposed KBS-FAOSOS-CFAR based on GIS performs better than KBS-Dynamic-CFAR and KBS-Adaptive Linear Combined-CFAR (KBS-ALC-CFAR) in severe interference case. CFAR techniques have been implemented on the ADSP (Advanced Digital Signal Processor) processing board, and the results have been evaluated and discussed.
Citation
Abdellatif Rouabah, M'hamed Hamadouche, Djamal Teguig, and Hamza Zeraoula, "Enhancing Detection Performances of Nonhomogeneous Weibull Clutter by Knowledge Based Systems Exploitation," Progress In Electromagnetics Research B, Vol. 94, 53-74, 2021.
doi:10.2528/PIERB21082004
References

1. Finn, H. M., "Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates," RCA Rev., Vol. 29, 414-465, 1968.

2. Conte, E., A. De Maio, and C. Galdi, "Statistical analysis of real clutter at different range resolutions," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 3, 903-918, 2004.
doi:10.1109/TAES.2004.1337463

3. Hong, S. W. and D. S. Han, "Performance analysis of an environmental adaptive CFAR detector," Mathematical Problems in Engineering, Vol. 2014, 2014.

4. Kononov, A. A., J.-H. Kim, J.-K. Kim, and G. Kim, "A new class of adaptive CFAR methods for nonhomogeneous environments," Progress In Electromagnetics Research B, Vol. 64, 145-170, 2015.
doi:10.2528/PIERB15091603

5. Zaimbashi, A., "An adaptive cell averaging-based CFAR detector for interfering targets and clutter-edge situations," Digital Signal Processing, Vol. 31, 59-68, 2014.
doi:10.1016/j.dsp.2014.04.005

6. Abbadi, A., H. Bouhedjeur, A. Bellabas, T. Menni, and F. Soltani, "Generalized closed-form expressions for CFAR detection in heterogeneous environment," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 7, 1011-1015, 2018.
doi:10.1109/LGRS.2018.2822782

7. Zhang, X., R. Zhang, W. Sheng, X. Ma, Y. Han, J. Cui, and F. Kong, "Intelligent CFAR detector for non-homogeneous weibull clutter environment based on skewness," IEEE Radar Conference (RadarConf 18), 0322-0326, 2018.

8. Kamal, M. S. and J. Abdullah, "New algorithm for multi targets detection in clutter edge radar environments," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 18, No. 1, 420-427, 2020.
doi:10.11591/ijeecs.v18.i1.pp420-427

9. Bandiera, F., O. Besson, D. Orlando, G. Ricci, and L. L. Scharf, "GLRT-based direction detectors in homogeneous noise and subspace interference," IEEE Transactions on Signal Processing, Vol. 55, No. 6, 2386-2394, 2007.
doi:10.1109/TSP.2007.893927

10. Ciuonzo, D., A. De Maio, and D. Orlando, "A unifying framework for adaptive radar detection in homogeneous plus structured interference --- Part II: Detectors design," IEEE Transactions on Signal Processing, Vol. 64, No. 11, 2907-2919, 2016.
doi:10.1109/TSP.2016.2519005

11. Ciuonzo, D., A. De Maio, and P. S. Rossi, "A systematic framework for composite hypothesis testing of independent Bernoulli trials," IEEE Signal Processing Letters, Vol. 22, No. 9, 1249-1253, 2015.
doi:10.1109/LSP.2015.2395811

12. Jiang, W., Y. Huang, G. Cui, and J. Yang, "Positive definite matrix space based detector with limited training samples for multiple target situations," Progress In Electromagnetics Research M, Vol. 60, 141-156, 2017.
doi:10.2528/PIERM17062003

13. Skolnik, M. I., Introduction to Radar Systems, McGraw-Hill, 2001.

14. Farina, A. and F. A. Studer, "A review of CFAR detection techniques in radar systems," Microwave Journal, Vol. 29, 115, 1986.

15. Trunk, G. V., "Radar properties of non-Rayleigh sea clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 8, No. 2, 196-204, 1972.
doi:10.1109/TAES.1972.309490

16. Ward, K. D., "Compound representation of high resolution sea clutter," Electronics Letters, Vol. 17, No. 16, 561-563, 1981.
doi:10.1049/el:19810394

17. Chan, H. C., "Radar sea-clutter at low grazing angles," IEE Proceedings F --- Radar and Signal Processing, Vol. 137, No. 2, 102-112, 1990.
doi:10.1049/ip-f-2.1990.0015

18. De Maio, A., A. Farina, and G. Foglia, "Knowledge-aided Bayesian radar detectors & their application to live data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 1, 170-183, 2010.
doi:10.1109/TAES.2010.5417154

19. Sekine, M., Y. Mao, and Y. H. Mao, Weibull Radar Clutter, IET, 1990.
doi:10.1049/PBRA003E

20. Hongsen, X. and Z. Kun, "CFAR detector using GIS information," 2010 Second IITA International Conference on Geoscience and Remote Sensing, Vol. 2, 272-274, 2010.
doi:10.1109/IITA-GRS.2010.5604216

21. Pourmottaghi, A., M. R. Taban, and S. Gazor, "A CFAR detector in a nonhomogenous Weibull clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 2, 1747-1758, 2012.
doi:10.1109/TAES.2012.6178094

22. Kong, L., X. Y. Peng, and T. Zhang, "A homogenous reference cells selector for CFAR detector in highly heterogeneous environment," Progress In Electromagnetics Research C, Vol. 41, 175-188, 2013.
doi:10.2528/PIERC13052604

23. Song, H., S. Lu, W. Yi, and L. Kong, "CFAR detector based on clutter partition in heterogeneous background," 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), 288-291, 2015.
doi:10.1109/ChinaSIP.2015.7230409

24. Lu, S., W. Yi, G. Cui, L. Kong, and X. Yang, "Design and application of dynamic environmental knowledge base," IET Radar, Sonar & Navigation, Vol. 10, No. 16, 1118-1126, 2016.
doi:10.1049/iet-rsn.2015.0516

25. Lu, S., W. Yi, W. Liu, G. Cui, L. Kong, and X. Yang, "Data-dependent clustering-CFAR detector in heterogeneous environment," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 1, 476-485, 2017.
doi:10.1109/TAES.2017.2740065

26. Darrah, C. A. and D. W. Luke, "Site-specific clutter modeling using DMA digital terrain elevation data (DTED), digital feature analysis data (DFAD), and Lincoln Laboratory five frequency clutter amplitude data," Proceedings of the 1996 IEEE National Radar Conference, 178-183, 1996.
doi:10.1109/NRC.1996.510677

27. Kurekin, A., D. Radford, K. Lever, D. Marshall, and L. K. Shark, "New method for generating site- specific clutter map for land-based radar by using multimodal remote-sensing images and digital terrain data," IET Radar, Sonar & Navigation, Vol. 5, No. 3, 374-388, 2011.
doi:10.1049/iet-rsn.2010.0036

28. Guerci, J. R. and E. J. Baranoski, "Knowledge-aided adaptive radar at DARPA: An overview," IEEE Signal Processing Magazine, Vol. 23, No. 1, 41-50, 2006.
doi:10.1109/MSP.2006.1593336

29. Marconcini, M., T. Esch, A. Felbier, and W. Heldens, "High-resolution global monitoring of urban settlements," Proc. of REAL CORP, 1-5, 2013.

30. Goldstein, G. B., "False-alarm regulation in log-normal and Weibull clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 9, No. 1, 84-92, 1973.
doi:10.1109/TAES.1973.309705

31. Ravid, R. A. F. I. and N. A. D. A. V. Levanon, "Maximum-likelihood CFAR for Weibull background," IEE Proceedings F --- Radar and Signal Processing, Vol. 139, No. 3, 256-264, 1992.
doi:10.1049/ip-f-2.1992.0033

32. Weiss, M., "Analysis of some modified cell-averaging CFAR processors in multiple-target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 18, No. 1, 102-114, 1982.
doi:10.1109/TAES.1982.309210

33. Rohling, H., "Radar CFAR thresholding in clutter and multiple target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, No. 4, 608-621, 1983.
doi:10.1109/TAES.1983.309350

34. Hansen, V. G. and J. H. Sawyers, "Detectability loss due to "Greatest Of" selection in a cell-averaging CFAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 1, 115-118, 1980.
doi:10.1109/TAES.1980.308885

35. De Maio, A., A. Farina, and G. Foglia, "Design and experimental validation of knowledge-based constant false alarm rate detectors," IET Radar, Sonar & Navigation, Vol. 1, No. 4, 308-316, 2007.
doi:10.1049/iet-rsn:20060113

36. Rouabah, A., H. Zeraoula, M. H. Hamadouche, and K. Tourche, "Proposal for a radar detection architecture based on the knowledge based systems exploitation," International Conference on Electrical Engineering and Control Applications, 1047-1060, 2019.

37. Magaz, B., A. Belouchrani, and M. Hamadouche, "A new adaptive linear combined CFAR detector in presence of interfering targets," Progress In Electromagnetics Research B, Vol. 34, 367-387, 2011.
doi:10.2528/PIERB11012603

38. Magaz, B., A. Belouchrani, and M. Hamadouche, "Automatic threshold selection in OS-CFAR radar detection using information theoretic criteria," Progress In Electromagnetics Research B, Vol. 30, 157-175, 2011.
doi:10.2528/PIERB10122502

39. Gandhi, P. P. and S. A. Kassam, "Analysis of CFAR processors in nonhomogeneous background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, No. 4, 427-445, 1988.
doi:10.1109/7.7185

40. Qu, Y. and N. C. Karmakar, "Novel CFAR detection," International Conference on Electrical and Computer Engineering, 366-369, 2004.

41. El Mashade, M. B., "Analysis of CFAR detection of fluctuating targets," Progress In Electromagnetics Research C, Vol. 2, 65-94, 2008.
doi:10.2528/PIERC08020802

42. Analog Devices, , TigerSHARC embedded processors, Dec. 2006.