Vol. 100
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-09-22
One-Step Absolutely Stable FDTD Methods for Electromagnetic Simulation
By
Progress In Electromagnetics Research Letters, Vol. 100, 45-52, 2021
Abstract
As the explicit finite-difference time-domain (FDTD) method is restricted by the well-known Courant-Friedruchs-Lewy (CFL) stability condition and is inefficient for solving numerical tasks with fine structures, various implicit methods have been proposed to tackle the problem, while many of them adopt time-splitting schemes that generally need at least two sub-steps to finish update at a full time step, and the strategies used seem to be an unnatural habit of computation compared with the most widely-used one-step methods. The procedure of splitting time step also reduces computational efficiency and makes implementation of these algorithms complex. In the present paper, two novel one-step absolutely stable FDTD methods including one-step alternating-direction-implicit (ADI) and one-step locally-one-dimensional (LOD) methods are proposed. The two proposed methods are derived from the original ADI-FDTD method and LOD-FDTD method through some linear operations applied to the original methods and are algebraically equivalent to the original methods respectively, but they both avoid the appearance of intermediate fields and are one-step method just like the conventional FDTD method. Numerical experiments are carried out for validation of the two proposed methods, and from the numerical results it can be concluded that the proposed methods can solve equation correctly and are simpler than the original methods, and their computation efficiency is close to that of the existing one-step leapfrog ADI-FDTD method.
Citation
Faxiang Chen, and Kang Li, "One-Step Absolutely Stable FDTD Methods for Electromagnetic Simulation," Progress In Electromagnetics Research Letters, Vol. 100, 45-52, 2021.
doi:10.2528/PIERL21080503
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd Edition, Artech House, Norwood, MA, 2005.

3. Huang, B. K., G. Wang, Y. S. Jiang, and W. B. Wang, "A hybrid implicit-explicit FDTD scheme with weakly conditional stability," Microw. Opt. Technol. Lett., Vol. 39, No. 2, 97-101, 2003.
doi:10.1002/mop.11138

4. Chen, J., "A review of hybrid implicit explicit finite difference time domain method," J. Computat. Phys., Vol. 363, 256-267, 2018.
doi:10.1016/j.jcp.2018.02.053

5. Sun, G. L. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations," Electron. Lett., Vol. 39, 595-597, 2003.
doi:10.1049/el:20030416

6. Sun, G. L. and C. W. Trueman, "Approximate Crank-Nicolson schemes for the 2-D nite-difference time-domain method for TE/sub z/waves," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 2963-2972, 2004.
doi:10.1109/TAP.2004.835142

7. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 2003-2007, 1999.
doi:10.1109/22.795075

8. Cooke, S. J., M. Botton, T. M. Antonsen, and B. Levush, "A leapfrog formulation of the 3D ADI-FDTD algorithm," Int. J. Numer. Model., Vol. 22, No. 2, 187-200, 2009.
doi:10.1002/jnm.707

9. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 85-87, 2007.
doi:10.1109/LMWC.2006.890166

10. Pereda, J. A. and A. Grande, "Numerical dispersion relation for the 2-D LOD-FDTD method in lossy media," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2122-2125, 2017.
doi:10.1109/LAWP.2017.2699692

11. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 697-704, 2003.
doi:10.1109/TMTT.2003.808732

12. Chen, W. J., Y. Tian, and J. Quan, "A novel unconditionally 2-D ID-WLP-FDTD method with low numerical dispersion," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 1, 1-3, 2020.
doi:10.1109/LMWC.2019.2954040

13. Li, J. X. and P. Y. Wu, "Unconditionally stable higher order CNAD-PML for left-handed materials," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 7156-7161, 2019.
doi:10.1109/TAP.2019.2927761

14. Feng, N. X., Y. Zhang, Q. Sun, J. Zhu, W. T. Joines, and Q. H. Liu, "An accurate 3-D CFS-PML based Crank-Nicolson FDTD method and its applications in low-frequency subsurface sensing," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 2967-2975, 2018.
doi:10.1109/TAP.2018.2816788

15. Duan, Y., B. Chen, and Y. Yi, "Efficient implementation for the unconditionally stable 2-D WLP- FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 677-679, 2009.
doi:10.1109/LMWC.2009.2031995

16. Wang, Y., Y. Yi, H. Chen, Z. Chen, Y. Duan, and B. Chen, "An efficient laguerre-based BOR- FDTD method using gauss-seidel procedure," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1829-1839, 2016.
doi:10.1109/TAP.2016.2540644

17. Liu, S., B. Zou, L. Zhang, and S. Ren, "A multi-GPU accelerated parallel domain decomposition one-step leapfrog ADI-FDTD," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 816-820, 2020.
doi:10.1109/LAWP.2020.2981123

18. Wang, Y., J. Wang, L. Yao, and W. Y. Yin, "A hybrid method based on leapfrog ADI-FDTD and FDTD for solving multiscale transmission line network," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 5, 273-280, 2020.
doi:10.1109/JMMCT.2020.3046273

19. Li, Z., J. Tan, J. Q. Guo, Z. Su, and Y. L. Long, "A parallel CE-LOD-FDTD model for instrument landing system signal disturbance analyzing," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2503-2512, 2019.
doi:10.1109/TAP.2019.2891294

20. Heh, D. Y. and E. L. Tan, "Multiple LOD-FDTD method for multiconductor coupled transmission lines," IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 5, 201-208, 2020.
doi:10.1109/JMMCT.2020.3024906

21. Wang, X. H., J. Y. Gao, Z. Chen, and F. L. Teixeira, "Unconditionally stable one-step leapfrog ADI-FDTD for dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2829-2834, 2019.
doi:10.1109/TAP.2019.2896651

22. Wang, J., B. Zhou, C. Gao, L. Shi, and B. Chen, "Leapfrog formulation of the 3-D LOD-FDTD algorithm," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 3, 137-139, 2014.
doi:10.1109/LMWC.2013.2293664

23. Feng, N. X., Y. X. Zhang, X. Q. Tian, J. F. Zhu, T. J. William, and G. P.Wang, "System-combined ADI-FDTD method and its electromagnetic applications in microwave circuits and antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 8, 3260-3270, 2019.
doi:10.1109/TMTT.2019.2919838