Vol. 105
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-11-04
Sensorless Control of Permanent Magnet Synchronous Motor Based on T-S Fuzzy Inference Algorithm Fractional Order Sliding Mode
By
Progress In Electromagnetics Research M, Vol. 105, 161-172, 2021
Abstract
In order to improve the robustness of the fractional order sliding mode controller (FSMC) for permanent magnet synchronous motor (PMSM) sensorless control, a fractional order sliding mode controller based on T-S fuzzy inference algorithm (FFSMC) is proposed to observe the rotor speed and position information. Based on the mathematical model of PMSM and sliding mode controller, a fractional order sliding mode controller is designed, and its stability is proved. The T-S fuzzy inference algorithm is used to tune the reaching law parameters of the FSMC, so that the reaching law parameters are no longer fixed values, but change with the state of the system. The correctness of the proposed method is verified by MATLAB simulation software. The effectiveness of the simulation results is verified by building a PMSM sensorless control experimental platform. The results show that the PMSM sensorless control based on FFSMC achieves parameter self-tuning and improves the observation accuracy. And the robustness of the control system is enhanced.
Citation
Yilin Zhu, Yang Bai, Hao Wang, and Lei Sun, "Sensorless Control of Permanent Magnet Synchronous Motor Based on T-S Fuzzy Inference Algorithm Fractional Order Sliding Mode," Progress In Electromagnetics Research M, Vol. 105, 161-172, 2021.
doi:10.2528/PIERM21072503
References

1. Hu, Q., L. Ling, Z. Cheng, et al. "Researching for sensorless control of PMSM based on a novel sliding mode observer," 2018 3rd International Conference on Advanced Robotics and Mechatronics, 542-547, 2018.
doi:10.1109/ICARM.2018.8610810

2. Pan, Y., X. Liu, Y. Zhu, B. Liu, and Z. Li, "Feedforward decoupling control of interior permanent magnet synchronous motor with genetic algorithm parameter identification," Progress In Electromagnetics Research M, Vol. 102, 117-126, 2021.
doi:10.2528/PIERM21032903

3. Sun, P., Q. Ge, B. Zhang, et al. "Sensorless control technique of PMSM based on RLS on-line parameter identification," 2018 21st International Conference on Electrical Machines and Systems, 1670-1673, 2018.
doi:10.23919/ICEMS.2018.8549482

4. Ni, R., K. Lu, F. Blaabjerg, et al. "A comparative study on pulse sinusoidal high frequency voltage injection and INFORM methods for PMSM position sensorless control," 2016 42nd Annual Conference of the IEEE Industrial Electronics Society, 2600-2605, 2016.

5. He, Y., "Speed observation of high-speed permanent magnet synchronous motor based on fuzzy MRAS," Chinese Control Conf. CCC, Vol. 2020, 3550-3555, 2020.

6. Farhan, A., M. Abdelrahem, A. Saleh, et al. "Robust sensorless direct speed predictive control of synchronous reluctance motor," IEEE Int. Symp. Ind. Electron., Vol. 2020, 1541-1546, June 2020.

7. Vieira, R. P., C. C. Gastaldini, R. Z. Azzolin, et al. "Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation," IEEE Trans. Ind. Electron., Vol. 61, No. 9, 4573-4582, 2014.
doi:10.1109/TIE.2013.2290759

8. Yuan, Q., Y. Yang, H. Wu, et al. "Low speed sensorless control based on an improved sliding mode observation and the inverter nonlinearity compensation for SPMSM," IEEE Access, Vol. 8, 61299-61310, 2020.
doi:10.1109/ACCESS.2020.2983181

9. Yahui, Z., F. Ming, and L. Weiwen, "Research on improved rotor position detection method based on SMO," J. Beijing Univ. Aeron. Astron., 1-15, 2019.

10. Liu, Y. C., S. Laghrouche, A. Nrdiaye, et al. "Active-flux-based super-twisting sliding mode observer for sensorless vector control of synchronous reluctance motor drives," 7th Int. IEEE Conf. Renew. Energy Res., Vol. 5, 402-406, 2018.

11. Chen, J., X. Wu, S. Chen, et al. "Sensorless flux adaption DTFC of an IPMSM based on an active flux-based MTPA and an adaptive second-order sliding mode observer," IET Power Electron., Vol. 13, No. 9, 1875-1884, 2020.
doi:10.1049/iet-pel.2019.1242

12. Li, W., Z. Du, W. Wang, et al. "Composite fractional order sliding mode control of permanent magnet synchronous motor based on disturbance observer," 2019 Chinese Automation Congress, 4012-4016, 2019.
doi:10.1109/CAC48633.2019.8996422

13. Huang, Y. and F. Wu, "A sensorless control method for permanent magnet synchronous motor based on fractional-order sliding mode observer," 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference, 1536-1542, 2020.
doi:10.1109/ITOEC49072.2020.9141772

14. Nicola, M. and C. Nicola, "Sensorless control of PMSM using fractional order SMC and extended kalman observer," 2021 18th International Multi-Conference on Systems, Signals & Devices, 526-532, 2021.
doi:10.1109/SSD52085.2021.9429370

15. Jia, L., Y. Huang, J. Zheng, et al. "Fuzzy sliding mode control of permanent magnet synchronous motor based on the integral sliding mode surface," 2019 22nd International Conference on Electrical Machines and Systems, 1-6, 2019.

16. Li, H. and Q. Wang, "Sliding mode controller based on fuzzy neural network optimization for direct torque controlled PMSM," 2010 8th World Congress on Intelligent Control and Automation, 2434-2438, 2010.

17. Kuppusamy, S. and Y. H. Joo, "Memory-based integral sliding-mode control for T-S fuzzy systems with PMSM via disturbance observer," IEEE Transactions on Cybernetics, Vol. 51, No. 5, 2457-2465, 2021.
doi:10.1109/TCYB.2019.2953567

18. Murakami, M., S. Morimoto, Y. Inoue, et al. "Maximum torque per ampere control of an IPMSM with magnetic saturation using online parameter identification," Proceedings of 2020 23rd International Conference on Electrical Machines and Systems, 1631-1636, Hamamatsu, Japan, 2020.