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Sensorless Control of Permanent Magnet Synchronous Motor Based
on T-S Fuzzy Inference Algorithm Fractional Order Sliding Mode

Yilin Zhu*, Yang Bai, Hao Wang, and Lei Sun

Abstract—In order to improve the robustness of the fractional order sliding mode controller (FSMC)
for permanent magnet synchronous motor (PMSM) sensorless control, a fractional order sliding mode
controller based on T-S fuzzy inference algorithm (FFSMC) is proposed to observe the rotor speed
and position information. Based on the mathematical model of PMSM and sliding mode controller, a
fractional order sliding mode controller is designed, and its stability is proved. The T-S fuzzy inference
algorithm is used to tune the reaching law parameters of the FSMC, so that the reaching law parameters
are no longer fixed values, but change with the state of the system. The correctness of the proposed
method is verified by MATLAB simulation software. The effectiveness of the simulation results is
verified by building a PMSM sensorless control experimental platform. The results show that the
PMSM sensorless control based on FFSMC achieves parameter self-tuning and improves the observation
accuracy. And the robustness of the control system is enhanced.

1. INTRODUCTION

Compared with other types of motors, permanent magnet synchronous motor (PMSM) excitation field
is provided by permanent magnets, and the rotor does not require excitation current. It has the
advantages of high efficiency, high power density, high efficiency, and small size. It is widely used in
aerospace, semiconductor industry, national defense industry, and other industrial fields [1, 2]. Regarding
PMSM control, whether it is vector control or direct control, the rotor position information and speed
information of the motor need to be collected during the control process. In actual control systems,
rotor position information is generally collected by mechanical sensors. This method not only increases
the cost of the control system, but also causes the problem of reduced detection accuracy due to long
term exposure of mechanical sensors to harsh environments. Therefore, it is necessary to study the
sensorless control of PMSM [3].

The principle of sensorless technology is to measure the voltage and current signals related to the
rotor position information, and then calculate the rotor position and speed through the estimation
algorithm. At present, there are mainly two methods: 1) the method based on the mathematical model
and 2) the algorithm based on the salient pole model. The specific methods are: back-EMF estimation
method, high frequency injection method [4], model reference adaptive algorithm [5], extended Kalman
filter algorithm [6], and sliding mode controller (SMC). Among them, SMC has the advantages of small
dependence on motor parameters and strong robustness, and is widely used in sensorless control of
PMSM. However, the inherent chattering problem of SMC will increase the energy consumption of the
system and affect the estimation accuracy [7].

In [8], an improved SMC is designed, using the sigmoid function instead of the traditional sgn
function to solve the rotor chattering problem, but there is a problem of complex calculations. In [9], a
new SMO is proposed to estimate the rotor position and speed, using the S-shaped switching function
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to improve the sign function to estimate the back electromotive force (EMF). However, the above two
methods of improving the sgn function will weaken the robustness of the system. A sliding mode
controller based on active flux is proposed to estimate rotor position and speed [10–11]. Although
this method is suitable for control systems with different speed ranges, it is more sensitive to system
parameter changes.

Therefore, a fractional order sliding mode controller (FSMC) is proposed, with energy transfer
slower than conventional calculus [12]. By introducing a fractional order reaching law, the chattering
caused by general sliding mode control is weakened. In [13], saturation function is used to weaken the
chattering of the FSMC. The fractional order phase-locked loop is used to extract the rotor speed and
rotor position. In addition, the FSMC can also be combined with an extended Kalman filter to realize
sensorless control of PMSM [14]. Due to the use of a large number of parameters, the observation
accuracy can be greatly improved.

As we all know, the choice of the reaching law coefficient also has a great influence on the jitter
amplitude value of the FSMC. In order to meet the nonlinearity, real-time performance and anti-
interference performance of the control system, the reaching law coefficient cannot be set as a fixed
value, but needs to be adjusted according to the state of the system. In [15], the fuzzy control algorithm
is introduced into SMC. This method does not need to design a precise control rate, but the control
accuracy is not high. In [16], a fuzzy neural network is used to optimize the control gain of the FSMC.
However, the neural network requires a lot of training, which will increase the calculation time. The first
order T-S fuzzy inference algorithm not only saves the steps of fuzzification and simplifies the calculation
process, but can also generate more complex nonlinear functions with a small number of fuzzy rules.
It can effectively reduce the number of fuzzy rules when dealing with multivariable nonlinear systems,
which has great advantages [17].

In this paper, the first order T-S fuzzy algorithm is used to tune the reaching law parameters of
the FSMC to form a PMSM sensorless control system based on FFSMC. Matlab simulation software
is used to verify the effectiveness of the control strategy proposed in this paper. In addition, a PMSM
sensorless control experiment platform was built to verify the simulation results.

2. MATHEMATICAL MODELS OF THE PMSM AND SMC

2.1. Mathematical Model of the PMSM

The stator winding of the PMSM is identical to the ordinary synchronous motor, while the excitation
winding in the rotor is replaced with the permanent magnet, so the mathematical model of PMSM
is similar to the mathematical model of ordinary synchronous motor. Under the premise of satisfying
accuracy, the following assumptions are often made [18]:

1) Ignoring the magnetic resistance of stator and rotor core.

2) Ignoring the magnetic path saturation.

3) Ignoring the effects of damping windings and high harmonics.

4) Ignoring the hysteresis and vortex losses.

In the d-q axis, the voltage and flux linkage of the PMSM are:[
ud
uq

]
=

[
R+ Lq · p −ωeLq

ωeLd R+ Lq · p

] [
id
iq

]
+ ωeψf

[
0

1

]
ψd = Ldid + ψf

ψq = Lqiq

(1)

where ud and uq are stator voltages in d- and q-axes, respectively; id and iq are stator currents in d-
and q-axes, respectively; Ld and Lq are inductance in d- and q-axes, respectively; R is the resistance of
windings; ωe is the rotor electrical angular velocity; p is the number of pole pairs; ψd and ψq are stator
flux linkages in d- and q-axes, respectively; ψf is the flux linkage of permanent magnet.

The voltage equation for the PMSM under the α-β axis is:{
uα = (R+ pLd)iα + [ωe(Ld − Lq)]iβ + Eα

uβ = [−ωe(Ld − Lq)]iα + (R+ pLd)iβ + Eβ
(2)
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where uα and uβ are stator voltages in α- and β-axes, respectively; iα and iβ are stator currents in α-
and β-axes, respectively; Eα and Eβ are expansion of the back-EMF in α- and β-axes, respectively.

The surface mounted permanent magnet synchronous motor is the research object of this paper,
and the components of the stator inductance on the d-q axis are equal (Ld = Lq). Therefore, the voltage
equation can be simplified to: {

uα = (R+ pLd)iα + Eα

uβ = (R+ pLd)iβ +Eβ
(3)

The state equation of the PMSM that can be derived by Equation (3) is:

diα
dt

= − R

Ld
iα + Eα + 1

Ld
uα

diβ
dt

= − R

Ld
iβ + Eβ + 1

Ld
uβ

dψα

dt
= −Riα + uα

dψβ

dt
= −Riβ + uβ

(4)

where ψα and ψβ are stator flux linkages in α- and β-axes, respectively.

2.2. Mathematical Models of the Traditional Sliding Mode Controller

The basic principle of using the traditional sliding mode controller (TSMC) to realize the sensorless
control of PMSM is:

1) After detecting the voltage and current of the motor stator, using the observation error of the stator
current to design the sliding mode surface.

2) Taking the back EMF when the system reaches the sliding mode surface Observed value.

3) Calculating the rotor position and speed through the observed value of back electromotive force.

As shown in Figure 1.
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Figure 1. Block diagram of the traditional sliding mode controller structure.

In the literature, the sliding surface is designed as:

S(x) = î− i (5)

where i = [ iα iβ ] is the measured value of the stator current, î =
[
îα îβ

]
is the estimated value

of the current.
The TSMC can be constructed from the state equation of PMSM as follows:

dîα
dt

= − R

Ld
îα − 1

Ld
k sgn

(
îα − iα

)
+

1

Ld
uα

dîβ
dt

= − R

Ld
îβ − 1

Ld
k sgn

(
îβ − iβ

)
+

1

Ld
uβ

(6)
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where k is the switching gain, and sgn is the sign function.
It can be derived by subtracting formula (4) from formula (6):

d(̂iα − iα)

dt
= − R

Ld

(
îα − iα

)
− 1

Ld
k sgn(̂iα − iα) +

1

Ld
Eα

d(̂iβ − iβ)

dt
= − R

Ld
(̂iβ − iβ)−

1

Ld
k sgn(̂iβ − iβ) +

1

Ld
Eβ

(7)

According to the basic principle of the TSMC to realize the PMSM sensorless control, when the
sliding mode surface is reached, the expression of the back-EMF can be derived as: Eα = k sgn

(
îα − iα

)
Eβ = k sgn

(
îβ − iβ

) (8)

{
Eα = −ψf ωe sin θe
Eβ = ψf ωe cos θe

(9)

It can be seen from the above formula that the speed and position information of the PMSM can
be obtained from the back-EMF Eα and Eβ, as shown in formula (10):

θ̂e = arctan

(
−Êα

Êβ

)

ω̂e =
dθ̂e
dt

(10)

where Êα, Êβ is the estimated value of back-EMF.

3. DESIGN OF SENSORLESS CONTROLLER OF PMSM

3.1. Design of Fractional Order Sliding Mode Controller

Compared with the TSMC, fractional order sliding mode controller (FSMC) uses the slow and convergent
characteristics of the energy transfer of a fractional order system to reduce the switching frequency and
switching speed of the system state variables on the sliding mode surface, so that the convergence speed
is faster and smoother, which can effectively improve the robustness of the system. And it is conducive
to the stable control of PMSM. Before designing a fractional sliding mode controller, considering that
the inductance and capacitance of the motor have the characteristics of fractional order, they need to be
processed. The motor’s motion equation and voltage equation can be obtained after Laplace transform:

I(s)

U(s)− E(s)
=

1

Lds+R

E(s)

I(s)− If (s)
=

KMCe

Js+Bm

(11)

where J is the moment of inertia, Bm the viscous friction coefficient, KM the torque coefficient, Ce the
back electromotive force constant, and If the load current.

Furthermore, by extending the motion equation and voltage equation of PMSM to the fractional
order, and performing Laplace transform on it: u = Ri+ Ld × 0D

λ
t i+ E

0D
σ
t ωe = −Bm

J
ωe +

KM

J
i− 1

J T
⇒


I(s)

U(s)− E(s)
=

1

Ldsλ +R

E(s)

I(s)− If (s)
=

KMCe

Jsσ +Bm

(12)

where 0D
λ
t is the fractional order calculus operator.
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Figure 2. The equivalent structure block diagram of PMSM. (a) Traditional. (b) Fractional order.

The Laplace transform results obtained from Equations (11) and (12) are drawn in the form of a
structural block diagram, as shown in Figure 2.

Decomposing the fractional voltage in Equation (12) on the α-β axis:[
uα
uβ

]
= R

[
iα
iβ

]
+ Ld × 0D

λ
t ×

[
iα
iβ

]
+

[
Eα

Eβ

]
(13)

Construct the dynamic equation by formula (13):[
uα
uβ

]
= R

[
îα

îβ

]
+ Ld × 0D

λ
t ×

[
îα

îβ

]
+

[
Êα

Êβ

]
(14)

Subtracting Equation (14) from Equation (13), the current observation error is:

0D
λ
t

[
uα
uβ

]
= − R

Ld

[
ĩα

ĩβ

]
+

1

Ld

[
Ẽα

Ẽβ

]
(15)

where ĩα = îα− iα, ĩβ = îβ − iβ is the current error, and Ẽα = Êα−Eα, Ẽβ = Êβ −Eβ is the back-EMF
error.

The fractional sliding mode surface is design as:

Sa = ĩ+ λ0 × 0D
b
t (16)

where ĩ =
[
ĩα ĩβ

]T
.

Find the derivative of the above formula:

0D
λ
t s = 0D

λ
t ĩ+ c× 0D

b+λ
t ĩ =

1

Ld

(
−Rĩ+ E − Ê

)
+ c× 0D

b+λ
t ĩ (17)

where Ẽ =
[
Ẽα Ẽβ

]T
, c is the coefficient.

The choice of the reaching law is very important to the control performance of the sliding mode
controller, and it represents the way that the system reaches the sliding mode surface. The fractional
exponential reaching law chosen in this paper is:

0D
λ
t S = −µs− εsgn(s) (18)

where µ, ε is the coefficient of the reaching law, and µ > 0, ε > 0.
In summary, the calculation formula for the estimated value of back-EMF can be derived as:

Ê = −Ri+ Ld × c× 0D
b+λ
t ĩ+ µs+ εsgn(s) (19)

After obtaining the estimated value of the back-EMF, the speed and position information of the
PMSM can be obtained by formula (10). The structural block diagram of the designed FSMC is shown
in Figure 3.

After completing the above design steps, it is necessary to conduct stability analysis of the designed
sliding mode controller. Take the Lyapunov function: V (t) = 1

2S
TS, and find the fractional derivative

of it:

0D
λ
t V ≤ S ×0 D

λ
t S = S

[
1

Ld

(
−Rĩ+ E − Ê

)
+ c× 0D

b+λ
t ĩ

]
(20)
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Figure 3. Structure block diagram of the fractional order sliding module controller.

Simplifying Equation (20) can be obtained:

0D
λ
t V ≤ S

[
−µs− εsgn(s) +

1

Ld
E

]
≤ −µS2 −

(
ε− 1

Ld
E

)
|S| (21)

It can be seen from formula (21) that when −ε > 1
Ld

|E| and µ > 0 are satisfied at the same time,

V (t) < 0 can be obtained, which satisfies the system stability condition.

3.2. Design of Fuzzy Fractional Order Sliding Mode Controller

It can be seen from the analysis in Section 3.1 that the magnitude of the approach rate parameter ε has
a greater impact on the chattering amplitude value of the sliding mode controller. In the control system,
when the controller error is large, the ε value needs to be increased. On the contrary, the ε value needs
to be decreased. Therefore, in order to meet nonlinearity, real time performance, and anti-interference
performance of the system, ε cannot be set as a fixed value, but needs to be adjusted according to the
system state. This paper proposes to use the first order T-S fuzzy inference algorithm to set the value
of ε. The fuzzy control system takes the sliding mode surface S and its derivative dS as the input, and
the absolute value of the output ∆u as the reaching law parameter ε. The structure diagram of the first
order T-S fuzzy inference algorithm is shown in Figure 4.

Figure 4. Structure block diagram of T-S fuzzy inference.

Table 1. Fuzzy control rules.

S
n z p n z p n z p

dS

s s s m s s m s s m

m s m l s m l s m l

l m l l m l l m l l
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(a) (b)

Figure 5. Membership function. (a) Sliding mode surface S; (b) Sliding mode surface derivative dS.

The sliding mode surface S is divided into three fuzzy sets: s (small), m (medium), and l (large).
Similarly, the sliding mode surface derivative dS is also divided into three fuzzy sets: n (negative), z
(zero), and p (positive), and use triangular membership functions to achieve fuzzification, as shown in
Figure 5. Table 1 lists the fuzzy rules.

In addition, the output of the system is also divided into three levels: s (small), m (medium), and
l (large). The fuzzy subset membership function expressions of input S and dS are:

ξS =



ξs (x) =

 1 x < s0
m0 − x

m0 − s0
s0 ≤ x ≤ m0

ξm (x) =


x− s0
m0 − s0

s0 ≤ x ≤ m0

l0 − x

l0 −m0
m0 < x ≤ l0

ξl (x) =


x−m0

l0 −m0
m0 < x ≤ l0

1 x > l0

(22)

ξdS =



ξn (x) =

 1 x < n0
z0 − x

z0 − n0
n0 ≤ x ≤ z0

ξz (x) =


x− n0
z0 − n0

n0 ≤ x ≤ z0

p0 − x

p0 − z0
z0 < x ≤ p0

ξp (x) =


x− z0
p0 − z0

z0 < x ≤ p0

1 x > p0

(23)

After tuning the reaching law parameters by TS fuzzy inference algorithm, a fuzzy fractional
order sliding mode controller (FFSMC) is designed, which can be used in the sensorless control system
of PMSM. The sensorless control of PMSM based on FFSMC can effectively reduce the chattering
amplitude value which improves the robustness of the control system.

3.3. Sensorless Control Based on FFSMC of PMSM

The block diagram of PMSM sensorless control system based on FFSMC is shown in Figure 6. The
rotor speed and rotor position feedback are calculated by the FFSMC module, and a speed closed loop
system is formed to control the PMSM rotor to rotate at a given speed. The estimated value of rotor
speed ω̂e is calculated by the FFSMC module and compared with the given value ω of speed. The
obtained speed error is adjusted by the PI controller, which realizes the closed loop control of speed by
replacing the traditional speed sensor with the speed observer.
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Figure 6. Structure block diagram of PMSM sensorless control system based on the FFSMC.

4. SIMULATION VERIFICATION

In order to verify the correctness and effectiveness of the FFSMC proposed in this paper to achieve
PMSM sensorless control, the two control strategies of traditional SMC and FFSMC were compared and
analyzed using Matlab/Simulink software. The simulation settings are: the given speed is 1000 r/min;
the simulation time is 0.4 s. Focusing on the rotor position and its error, the rotor speed and its error
have been analyzed.

Figure 7 and Figure 8 are the estimated values of rotor position and error of the traditional SMC
and FFSMC, respectively. It can be seen that the rotor position estimation error of the traditional SMC
is about 0.34 rad, while the rotor position estimation error of the FFSMC is only 0.07 rad. The rotor
position error of the proposed FFSMC is reduced by 79.12%. Therefore, the rotor position observation
accuracy of the proposed FFSMC is higher.

Figure 9 and Figure 10 show the estimated values of the rotational speed and rotational speed
error of the traditional SMC and FFSMC, respectively. It can be seen from the figures that compared
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Figure 7. Rotor position observation of traditional SMC. (a) Rotor position estimate. (b) Rotor
position estimate error.
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(a) (b)

Figure 8. Rotor position observation of FFSMC. (a) Rotor position estimate. (b) Rotor position
estimate error.
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Figure 9. Rotor speed observation of traditional SMC. (a) Rotor speed estimate. (b) Rotor speed
estimate error.

to a conventional controller, the speed response curve of FFSMC is smoother, and the error is smaller,
which is only about ±3 r/min. While the traditional SMC reached 10 r/min, indicating that the speed
error decreased by about 70%. Therefore, the rotational speed observation accuracy of the proposed
FFSMC is higher.

5. EXPERIMENTAL RESULTS

According to the above analysis, the PMSM sensorless control experimental platform based on FFSMC
is built, as shown in Figure 11. The motor parameters are listed in Table 2.

In order to verify the effectiveness of the control strategy proposed in this paper, the experimental
waveforms of the traditional SMC and FFSMC are presented. Figures 12 and 13 are waveform graphs
of the motor speed, rotor position, and error of FFSMC and traditional SMC at no-load, respectively.
It can be seen from Figure 13(b) that the rotor position error of traditional SMC is about 12◦. From
Figure 12(b), the rotor position error of FFSMC is about 6◦, and the speed waveform is smoother.
Figure 12 is an experimental waveform diagram. Hence, the speed and rotor position estimated by
FFSMC ensure good accuracy and stability, and the speed fluctuation is small, which can effectively
track and accurately estimate the rotor position and speed.
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(a) (b)

Figure 10. Rotor speed observation of FFSMC. (a) Rotor speed estimate. (b) Rotor speed estimate
error.

Figure 11. The experiment platform of PMSM sensorless control.

Table 2. Parameter of the motor.

Symbol Value Symbol Value

Pn/W 20 n/(r/min) 3600

Udc/V 96 R/Ω 0.006

In/A 190 ψf/Wb 0.03

Te/(N·m) 54 P 4

L/(cm) 108 Frequency (kHz) 16

(a) (b)

Figure 12. Experimental results of FFSMC. (a) Speed curve. (b) Rotor position.
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(a) (b)

Figure 13. Experimental results of traditional SMC. (a) Speed curve. (b) Rotor position.

   

(a) (b)

Figure 14. Experimental results of FFSMC under full-load condition. (a) Speed curve. (b) Rotor
position.

Figure 14 shows the waveforms of the FFSMC result under full-load condition. As can be seen
from it, the rotor position error when the motor is full load is about 8◦, which increases by 2◦ more
than when the motor is no-load. Although the rotor position error increased, it had better tracking
performance. In conclusion, the control strategy proposed in this paper has good position estimation
accuracy for both no-load and full load conditions.

6. CONCLUSION

In this paper, an FFSMC controller is used to estimate the rotor position and speed in the surface
mounted PMSM sensorless control system. Combining the first-order T-S fuzzy algorithm with FSMO,
the parameters in the reaching law of the FSMC are adjusted online to make them change with the
state of the control system. The simulation and experiment results show that the FFSMC proposed
in this paper not only reduces the chattering amplitude value of the traditional sliding mode control,
but also improves the observation accuracy of the rotor position and speed. The proposed method is of
great significance to the sensorless research of PMSM.
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