Vol. 100
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-09-18
Broadband Surface-Mount Dipole Antenna Array Using Highly Isolated via Fence for 5G Millimeter-Wave Applications
By
Progress In Electromagnetics Research Letters, Vol. 100, 27-34, 2021
Abstract
This letter proposes a 2×2 surface-mount dipole antenna array based on via fence for 5G millimeter-wave applications. The dipole antenna element was first proposed, which has a compact size and low cost. Then the via fences are introduced to reduce coupling between adjacent elements and enhance isolation. In this way, compared with a 1×2 antenna array without the via fence, the isolation of a 1×2 antenna array with a via fence is improved by 12 dB at 26 GHz. The elements are extended into 2×2 arrays with and without the via fence, and their performance is evaluated by the evaluation board. The measurement results show that the -10-dB impedance bandwidth of the antenna array is 19% (24.7-29.9 GHz), and the peak gain is 9.5 dBi at 25 GHz. The proposed 2×2 array can be used in the N257 (26.5-29.5 GHz), N258 (24.25-27.5 GHz), and N261 (27.5-28.35 GHz) frequency bands. Low cost, small size, and high isolation characteristics make it one of the candidates for 5G millimeter-wave applications.
Citation
Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "Broadband Surface-Mount Dipole Antenna Array Using Highly Isolated via Fence for 5G Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 100, 27-34, 2021.
doi:10.2528/PIERL21071702
References

1. Andrews, J. G., "What will 5G be," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014, doi: 10.1109/JSAC.2014.2328098.
doi:10.1109/JSAC.2014.2328098

2. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
doi:10.1109/ACCESS.2013.2260813

3. Zhang, J., J. Li, and J. Chen, "Mutual coupling reduction of a circularly polarized four-element antenna array using metamaterial absorber for unmanned vehicles," IEEE Access, Vol. 7, 57469-57475, 2019, doi: 10.1109/ACCESS.2019.2913552.
doi:10.1109/ACCESS.2019.2913552

4. Luan, H., C. Chen, W. Chen, L. Zhou, H. Zhang, and Z. Zhang, "Mutual coupling reduction of closely E=H-plane coupled antennas through metasurfaces," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 10, 1996-2000, Oct. 2019, doi: 10.1109/LAWP.2019.2936096.
doi:10.1109/LAWP.2019.2936096

5. Shen, X., Y. Liu, L. Zhao, G. Huang, X. Shi, and Q. Huang, "A miniaturized microstrip antenna array at 5G millimeter-wave band," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 8, 1671-1675, Aug. 2019, doi: 10.1109/LAWP.2019.2927460.
doi:10.1109/LAWP.2019.2927460

6. Exposito-Dominguez, G., J.-M. Fernandez-Gonzalez, P. Padilla, and M. Sierra-Castaner, "Mutual coupling reduction using EBG in steering antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1265-1268, 2012, doi: 10.1109/LAWP.2012.2226013.
doi:10.1109/LAWP.2012.2226013

7. Abedin, M. F. and M. Ali, "Effects of a smaller unit cell planar EBG structure on the mutual coupling of a printed dipole array," IEEE Antennas Wirel. Propag. Lett., Vol. 4, 274-276, 2005, doi: 10.1109/LAWP.2005.854004.
doi:10.1109/LAWP.2005.854004

8. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 57-59, 2010, doi: 10.1109/LAWP.2010.2042565.
doi:10.1109/LAWP.2010.2042565

9. Dalal, P. and S. K. Dhull, "Design of triple band-notched UWB MIMO/diversity antenna using triple bandgap EBG structure," Progress In Electromagnetics Research C, Vol. 113, 197-209, 2021.
doi:10.2528/PIERC21050202

10. Zhang, Y., J.-Y. Deng, M.-J. Li, D. Sun, and L.-X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-Wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 4, 747-751, Apr. 2019, doi: 10/ghbsx7.
doi:10.1109/LAWP.2019.2901961

11. Farsi, S., H. Aliakbarian, D. Schreurs, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1501-1503, 2012, doi: 10.1109/LAWP.2012.2232274.
doi:10.1109/LAWP.2012.2232274

12. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-pro le folded split-ring resonators (FSRRs)," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 862-865, 2011, doi: 10.1109/LAWP.2011.2165931.
doi:10.1109/LAWP.2011.2165931

13. Vishvaksenan, K. S., K. Mithra, R. Kalaiarasan, and K. S. Raj, "Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2146-2149, 2017, doi: 10.1109/LAWP.2017.2700521.
doi:10.1109/LAWP.2017.2700521

14. Xia, R.-L., S.-W. Qu, P.-F. Li, Q. Jiang, and Z.-P. Nie, "An efficient decoupling feeding network for microstrip antenna array," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 871-874, 2015, doi: 10.1109/LAWP.2014.2380786.
doi:10.1109/LAWP.2014.2380786

15. Li, M., M. Wang, L. Jiang, and L. K. Yeung, "Decoupling of antennas with adjacent frequency bands using cascaded decoupling network," IEEE Trans. Antennas Propag., Vol. 69, No. 2, 1173-1178, Feb. 2021, doi: 10/gk6nm5.
doi:10.1109/TAP.2020.3010956

16. Zou, X.-J., G.-M. Wang, Y.-W. Wang, and H.-P. Li, "An efficient decoupling network between feeding points for multielement linear arrays," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3101-3108, May 2019, doi: 10/gk6nm7.
doi:10.1109/TAP.2019.2899039

17. Zhang, Y. P., "Enrichment of package antenna approach with dual feeds, guard ring, and fences of vias," IEEE Trans. Adv. Packag., Vol. 32, No. 3, 612-618, Aug. 2009, doi: 10.1109/TADVP.2008.2001769.
doi:10.1109/TADVP.2008.2001769

18. He, Y. and Y. Li, "Dual-polarized microstrip antennas with capacitive via fence for wide beamwidth and high isolation," IEEE Trans. Antennas Propag., Vol. 68, No. 7, 5095-5103, Jul. 2020, doi: 10/gg9xgv.
doi:10.1109/TAP.2020.2975269