
Progress In Electromagnetics Research Letters, Vol. 100, 27–34, 2021

Broadband Surface-Mount Dipole Antenna Array Using Highly
Isolated Via Fence for 5G Millimeter-Wave Applications

Xiubo Liu1, Wei Zhang1, Dongning Hao1, and Yanyan Liu2, *

Abstract—This letter proposes a 2× 2 surface-mount dipole antenna array based on via fence for 5G
millimeter-wave applications. The dipole antenna element was first proposed, which has a compact size
and low cost. Then via fences are introduced to reduce the coupling between adjacent elements and
enhance isolation. In this way, compared with a 1×2 antenna array without the via fence, the isolation
of a 1× 2 antenna array with a via fence is improved by 12 dB at 26GHz. The elements are extended
into 2× 2 arrays with and without the via fence, and their performance is evaluated by the evaluation
board. The measurement results show that the −10-dB impedance bandwidth of the antenna array is
19% (24.7–29.9GHz), and the peak gain is 9.5 dBi at 25GHz. The proposed 2× 2 array can be used in
the N257 (26.5–29.5GHz), N258 (24.25–27.5GHz), and N261 (27.5–28.35GHz) frequency bands. Low
cost, small size, and high isolation characteristics make it one of the candidates for 5G millimeter-wave
applications.

1. INTRODUCTION

The millimeter-wave frequency band provides high carrier frequency and massive bandwidth to solve
the shortage of global cellular communication for next-generation 5G applications. On the other hand,
the atmosphere, rain absorption, and path loss in the millimeter-wave frequency band are stronger than
those in the low-frequency band [1, 2]. To solve this problem, it is necessary to use an antenna array
with an unprecedented number of antennas, which results in a smaller distance between the antenna
elements. The smaller the distance is, the stronger the coupling is between the antennas. Strong
coupling reduces the signal quality. Therefore, reducing the mutual coupling of antenna elements is one
of the challenges for 5G millimeter-wave antenna arrays.

Many methods have been studied to suppress the coupling between antenna elements. The main
methods are divided into the following categories, such as metasurface or metamaterial absorber [3, 4],
electromagnetic bandgap structures (EBG) [5–9], metal strip resonators [10–13], and decoupling feeding
network [14–16]. However, the above-mentioned methods have a large volume and a complicated
structure. They are not suitable for the integration of 5G millimeter-wave systems. Via fence is a
method to improve isolation and suppress the coupling between antenna and RF chip [17]. Capacitive
via fences have been successfully verified to enhance the isolation of dual-polarized microstrip antennas
while maintaining miniaturization and high port isolation [18].

Therefore, in this letter, we propose a solution based on the via fence to enhance the isolation
of adjacent elements for the 28GHz millimeter-wave antenna array. The prototype is designed on a
low-cost single-layer FR4 substrate with two rows of via fences to enhance the isolation of the antenna
elements. By using the BGA packaging, the prototypes have surface mount characteristics, which are
more convenient to be integrated into the system. To verify the design, a 2 × 2 array prototype was
fabricated and measured. The measured results are in good agreement with the simulated ones.
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2. ANTENNA DESIGN

2.1. Antenna Element Configurations

Figure 1 shows the evolution of the antenna elements. First, it is derived from a planar two-dimensional
(2D) endfire dipole antenna, as shown in Figure 1(a). The planar radiating dipole is fed by a grounded
coplanar waveguide (GCPW). Secondly, Figure 1(b) shows a three-dimensional (3D) structure based
on the 2D endfire antenna. With the help of plated through holes (PTH), the antenna feeds the dipole
from the bottom feed point. Finally, the solder balls are installed at the bottom of the antenna to
achieve the BGA packaging, as shown in Figure 1(c). The BGA packaging makes the antenna smaller
and easier to integrate.

(a) (b) (c)

Figure 1. Design evolution of the proposed antenna element. (a) 2D planar endfire antenna. (b) 3D
broadside antenna. (c) BGA packaged 3D broadside antenna.
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Figure 2. Geometry of the proposed antenna element. (a) Explored view. (b) Top view. (c) Bottom
view.
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The proposed antenna element is shown in Figure 2. The antenna consists of a single dielectric layer.
It is manufactured on an FR4 substrate (εr = 4.4, tan δ = 0.02) with a thickness of 1.4mm. The top
layer of the antenna consists of two dipole patches. As shown in Figure 2(b), one is the main patch, and
the other is the auxiliary patch. The main patch is connected to the bottom-feed point through PTH,
and the auxiliary patch is directly connected to the bottom ground plane through another PTH. The
bottom layer is mainly composed of the bottom feed point and ground plane. As shown in Figure 2(c),
the feed point and ground plane are separated by an annular air gap. After optimization in the Ansys
HFSS, the detailed dimensions of the proposed antenna element are given in Table 1. As shown in
Figure 3, it can be observed that the simulation results show that in the 24–32GHz frequency band,
the antenna gain is 4.68–5.29 dBi, and the efficiency is between 88.7 and 91.09%.

Table 1. Dimensions of the proposed antenna element (units: mm).

Parameters Values Parameters Values

L1 6 W2 2.2

L2 0.5 W3 2.9

W1 6 Φ1 0.8
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Figure 3. (a) Simulated gain and efficiency of the antenna element. (b) 3D radiation pattern at
28GHz.

2.2. Adjacent Element Isolation

The 1×2 antenna array is shown in Figure 4. Based on the antenna element, a 1×2 antenna array with
a size of 7mm× 6mm× 0.254mm was made to evaluate the isolation. In Figure 4(b), a row of ground
via fences is added based on Figure 4(a). The via fence can be equivalent to the electrical boundary
and effectively shielding the electric field between the antenna elements, thereby improving the isolation
between adjacent elements.

x

z
Ant1 Ant2 Ant1 Ant2

Via fence

(a) (b)

Figure 4. Cross-section of the proposed 1×2 antenna array (a) Without via fence. (b) With via fence.
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Photographs of the 1× 2 antenna array with and without the via fences are shown in Figures 5(a)
and (b), respectively. The prototypes are mounted on the RO4350B evaluation board (εr = 3.66,
tan δ = 0.004) with a size of 14mm × 43mm × 0.254mm. The measurement results of port-to-port
isolation are shown in Figure 5(c). It can be seen that the isolation of prototype without via fence is
under −24.57 dB, while the isolation of prototype with via fence is under −27 dB. In particular, the
isolation is −36.7 dB at 26GHz, which is 12.1 dB higher than the prototype without via fence.
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Figure 5. Photograph of the 1× 2 antenna prototype. (a) Without via fence. (b) With via fence. (c)
Measured S-parameters.

3. MEASUREMENT RESULTS AND DISCUSSION

Based on the above analysis, a 2× 2 antenna array was made to verify the design. Figures 6(a) and (b)
show photos of the prototypes with and without the via fence, respectively. The size of the 2 × 2
antenna array is 13mm× 13mm, and the center-to-center distance between adjacent elements is 7mm.
Similarly, as shown in Figures 6(c) and (d), the evaluation board is also made on the RO4350B board
with a size of 28mm × 34mm × 0.254mm. Three GCPW-based power dividers with one to two T-
junctions converting the RF signal into four signals with the same amplitude and phase. Additionally,
the width of the 50Ω GCPW is 0.54mm, and the width of the 35.35Ω T-junction is 1.14mm. After
the prototypes are mounted on the evaluation board, the 2.92mm connector is used to connect the
evaluation board to the coaxial cable of the network analyzer (Rohde & Schwarz, ZVA40). Besides, the
radiation patterns are measured in an anechoic chamber.

As can be seen from Figure 7(a), the −10 dB bandwidths of 2 × 2 prototypes with and without
via fences are 24.7–29.9GHz and 24.9–29.5GHz, respectively. The bandwidth of the prototype with
the via fence is slightly wider. The −10 dB impedance bandwidth covers the 5G millimeter-wave N257
(26.5–29.5GHz and N261 (27.5–28.35GHz) bands. As shown in Figure 7(b), the measured gains of
the prototypes with and without the via fence are 8.3–9.5 dBi and 8.3–10.2 dBi in the range of 24.7 to
29.9GHz. As can be observed in Figure 8, the measured and simulated normalization radiation patterns
with and without the via fence are shown at 26, 28, and 30GHz, respectively. Some discrepancies can
be observed between the simulated and measured results, but an acceptable consistency is obtained due
to the influence of manufacturing tolerance and measurement deviation. In the broadside direction,
the measured E-plane cross-polarization of the prototype without the via fence is less than −21.2 dB,
−25 dB, and −15.5 dB at 26, 28, and 30GHz, respectively. Additionally, the measured cross-polarization
of the prototype with the via fence is lower than −20.6, −18.8, and −19.4 dB, respectively. The via
fence suppresses the cross-polarization level, especially at the high-frequency bands.

Table 2 shows a comparison with other reported work. Reference [18] also uses the via fence method,
but it is used for the dual-Polarized ports inside the microstrip antenna. In this work, the via fence
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(a) (b)
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Figure 6. Photograph of the 2 × 2 array prototype. (a) Without via fence. (b) With via fence.
Assembly prototype. (c) Without via fence. (d) With via fence.
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Figure 7. (a) Measured and simulated reflection coefficient of the prototype. (b) Measured and
simulated peak gain of the prototype.

is used to enhance the isolation of the adjacent antenna element in the antenna array. Reference [14]
realizes the optimal isolation between the adjacent elements, but the design of the decoupling network
is relatively complex. Compared with [3] and [5], the proposed method achieves better impedance
bandwidth, isolation, and antenna gain. The via fence also shows an effective way to enhance the
isolation and suppress the coupling between adjacent antenna elements. Besides, the BGA packaging
also makes the proposed antenna more suitable for integration in a millimeter-wave system.
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Figure 8. Simulated and measured E-plane and H-plane normalized radiation patterns at 26GHz,
28GHz, and 30GHz. (a) Without via fence. (b) With via fence.
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Table 2. Comparisons between the proposed and reported antennas.

Ref. Method
No. of

elements

Max

Reduction in

|S21| (dB)

Measured

Imp. BW

(−10 dB) (%)

Measured

peak gain

(dBi)

Dimension

(λ3
0)

Material

[3] Metamaterial 2× 2 25 3.9 2.3 0.8× 0.8× 0.19 Taconic RF60

[5] EBG 1× 2 15 14.8 7 1.35× 1.14× 0.13 Rogers4003

[14]
Decoupling

network
1× 2 58 9.2 6.88 1.01× 1× 0.2 -

[18] Via fence 1× 1 32 3 5.6 0.19× 0.19× 0.07 F4BM

This work Via fence 2× 2 37.4 19 9.5 1.6× 1.6× 0.2 FR4

4. CONCLUSIONS

A 2×2 surface-mount dipole antenna array based on via fence for 5G millimeter-wave has been presented.
The via fence in the array significantly reduces the coupling between adjacent antenna elements and
enhances isolation. The measurement results show that the −10 dB impedance bandwidth is 19%, and
the isolation between the adjacent antenna elements is less than −28.76 dB in the range of 24.2–29.5GHz
(N257 (26.5–29.5GHz), N258 (24.25–27.5GHz), and N261 (27.5–28.35GHz)). The compact size, low
cost, and high isolation characteristics make the proposed antenna array one of the promising candidates
for 5G millimeter-wave applications.
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