login
Vol. 104
Latest Volume
All Volumes
PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-03
Fast Backfire Double Annealing Particle Swarm Optimization Algorithm for Parameter Identification of Permanent Magnet Synchronous Motor
By
Progress In Electromagnetics Research M, Vol. 104, 23-38, 2021
Abstract
When particle swarm optimization (PSO) is used to identify the parameters of permanent magnet synchronous motor (PMSM), the movement of particles is not selective, which makes the algorithm easy to fall into the local optimum, and the accuracy is poor. The simulated annealing particle swarm optimization (SAPSO) improves the accuracy and evolution speed, but SAPSO has redundant iteration problems. To solve these problems, a motor parameter identification method based on fast backfire double anneal particle swarm optimization (FBDAPSO) is proposed. By reducing the optimization time and quickly tempering and annealing the "misunderstood" difference, the motor adjustable model and fitness function are designed, and the number of iterations is constantly reset to achieve the effect of online identification. Under different working conditions, simulated and experimental results show that the proposed method can quickly and accurately identify the four parameters of the motor's stator, winding resistance, stator winding d-axis inductance, stator winding q-axis inductance and permanent magnet flux linkage at the same time, compared with the traditional method of parameter identification, and it has better accuracy, rapidity, and robustness.
Citation
Dingdou Wen, Chuandong Shi, Kaixian Liao, Jianhua Liu, and Yang Zhang, "Fast Backfire Double Annealing Particle Swarm Optimization Algorithm for Parameter Identification of Permanent Magnet Synchronous Motor," Progress In Electromagnetics Research M, Vol. 104, 23-38, 2021.
doi:10.2528/PIERM21052802
References

1. Li, X., L. Zhang, H. Ying, et al. "Study of suppression of vibration and noise of PMSM for electric vehicles," IET Electric Power Applications, Vol. 14, No. 7, 1274-1282, 2020.
doi:10.1049/iet-epa.2019.0805

2. Yi, P., Z. Sun, and X. Wang, "Research on PMSM harmonic coupling models based on magnetic co-energy," IET Electric Power Applications, Vol. 13, No. 4, 571-579, 2019.
doi:10.1049/iet-epa.2018.5196

3. Shi, T., Y. Xu, M. Xiao, et al. "VSP predictive torque control of PMSM," IET Electric Power Applications, Vol. 13, No. 4, 463-471, 2019.
doi:10.1049/iet-epa.2018.5497

4. Chen, Q., L. Gu, Z. Lin, et al. "Extension of space-vector-signal-injection-based MTPA control into SVPWM fault-tolerant operation for five-phase IPMSM," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7321-7333, 2020.
doi:10.1109/TIE.2019.2944066

5. Du, J., X. Wang, and H. Lv, "Optimization of magnet shape based on efficiency map of IPMSM for EVs," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 7, 1-7, 2016.

6. Li, L. and Q. Liu, "Research on IPMSM drive system control technology for electric vehicle energy consumption," IEEE Access, Vol. 7, No. 1, 186201-186210, 2019.
doi:10.1109/ACCESS.2019.2958944

7. He, C. and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Transactions on Electrical Machines and Systems, Vol. 3, No. 1, 94-100, 2019.
doi:10.30941/CESTEMS.2019.00013

8. Perdukova, D., P. Palacky, P. Fedor, et al. "Dynamic identification of rotor magnetic flux, torque and rotor resistance of induction motor," IEEE Access, Vol. 8, No. 1, 142003-142015, 2020.
doi:10.1109/ACCESS.2020.3013944

9. Li, X. and R. Kennel, "General formulation of Kalman-filter-based online parameter identification methods for VSI-fed PMSM," IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, 2856-2864, 2021.
doi:10.1109/TIE.2020.2977568

10. Yang, H., R. Yang, W. Hu, et al. "FPGA-based sensorless speed control of PMSM using enhanced performance controller based on the reduced-order EKF," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 7, 289-301, 2021.
doi:10.1109/JESTPE.2019.2962697

11. Loria, A., E. Panteley, and M. Maghenem, "Strict lyapunov functions for model reference adaptive control: Application to lagrangian systems," IEEE Transactions on Automatic Control, Vol. 64, No. 7, 3040-3045, 2019.
doi:10.1109/TAC.2018.2874723

12. Zhao, L., J. Huang, H. Liu, et al. "Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives," IEEE Transactions on Industrial Electronics (1982), Vol. 61, No. 10, 5280-5289, Jan. 1, 2014.
doi:10.1109/TIE.2014.2301730

13. Raouti, D., S. Flazi, and D. Benyoucef, "Modeling and identification of electrical parameters of positive DC point-to-plane corona discharge in dry air using RLS method," IEEE Transactions on Plasma Science, Vol. 44, No. 7, 1144-1149, 2016.
doi:10.1109/TPS.2016.2577634

14. Zhao, H., H. H. Eldeeb, J. Wang, et al. "Parameter identification based online noninvasive estimation of rotor temperature in induction motors," IEEE Transactions on Industry Applications, Vol. 57, No. 1, 417-426, 2021.
doi:10.1109/TIA.2020.3039940

15. Shao, M., J. Huang, S. Wei, et al. "An improved PSO algorithm for parameter identification of Bouc-Wen model for piezoelectric actuator," Proceedings of the 39th Chinese Control Conference, 1070-1074, Shenyang, China, 2020.

16. Liu, K. and Z. Q. Zhu, "Position-offset-based parameter estimation using the adaline NN for condition monitoring of permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 62, No. 4, 2372-2383, 2015.
doi:10.1109/TIE.2014.2360145

17. Ortombina, L., D. Pasqualotto, F. Tinazzi, et al. "Magnetic model identification of synchronous motors considering speed and load transients," IEEE Transactions on Industry Applications, Vol. 56, No. 5, 4945-4954, 2020.
doi:10.1109/TIA.2020.3003555

18. Accetta, A., F. Alonge, M. Cirrincione, et al. "GA-based off-line parameter estimation of the induction motor model including magnetic saturation and iron losses," IEEE Open Journal of Industry Applications, Vol. 1, No. 5, 135-147, 2020.
doi:10.1109/OJIA.2020.3024567

19. Liu, Z., H. Wei, Q. Zhong, et al. "GPU implementation of DPSO-RE algorithm for parameters identification of surface PMSM considering VSI nonlinearity," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 5, No. 3, 1334-1345, 2017.
doi:10.1109/JESTPE.2017.2690688

20. Liu, Z., H. Wei, X. Li, et al. "Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO," IEEE Transactions on Power Electronics, Vol. 33, No. 12, 10858-10871, 2018.
doi:10.1109/TPEL.2018.2801331

21. Calvini, M., M. Carpita, A. Formentini, et al. "PSO-based self-commissioning of electrical motor drives," IEEE Transactions on Industrial Electronics, Vol. 62, No. 2, 768-776, 2015.
doi:10.1109/TIE.2014.2349478

22. Srivastava, V., A. Stein, D. G. Rossiter, et al. "Simulated annealing with variogram-based optimization to quantify spatial patterns of trees extracted from high-resolution images," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 8, 1084-1088, 2016.
doi:10.1109/LGRS.2016.2565743

23. Pan, X., L. Xue, Y. Lu, et al. "Hybrid particle swarm optimization with simulated annealing," Multimedia Tools and Applications, Vol. 78, No. 8, 29921-29936, 2019.
doi:10.1007/s11042-018-6602-4

24. Ma, H., L. Chu, J. Guo, et al. "Cooperative adaptive cruise control strategy optimization for electric vehicles based on SA-PSO with model predictive control," IEEE Access, Vol. 8, No. 21, 225745-225756, 2020.
doi:10.1109/ACCESS.2020.3043370

25. Wang, J. L., Y. Li, and A. An, "Dynamic parameter identification of upper-limb rehabilitation robot system based on variable parameter particle swarm optimisation," IET Cyber-systems and Robotics, Vol. 2, No. 3, 140-148, Jan. 1, 2020.
doi:10.1049/iet-csr.2020.0023

26. Liu, Z., H. Wei, Q. Zhong, et al. "Parameter estimation for VSI-fed PMSM based on a dynamic PSO with learning strategies," IEEE Transactions on Power Electronics, Vol. 32, No. 4, 3154-3165, 2017.
doi:10.1109/TPEL.2016.2572186

27. Sandre-Hernandez, O., R. Morales-Caporal, J. Rangel-Magdaleno, et al. "Parameter identification of PMSMs using experimental measurements and a PSO algorithm," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 8, 2146-2154, 2015.
doi:10.1109/TIM.2015.2390958

28. Dekkers, A. and E. H. L. Aarts, "Global optimization and simulated annealing," Mathematical Programming, Vol. 50, No. 3, 367-393, 1991.
doi:10.1007/BF01594945