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Abstract—When particle swarm optimization (PSO) is used to identify the parameters of permanent
magnet synchronous motor (PMSM), the movement of particles is not selective, which makes the
algorithm easy to fall into the local optimum, and the accuracy is poor. The simulated annealing
particle swarm optimization (SAPSO) improves the accuracy and evolution speed, but SAPSO has
redundant iteration problems. To solve these problems, a motor parameter identification method based
on fast backfire double anneal particle swarm optimization (FBDAPSO) is proposed. By reducing
the optimization time and quickly tempering and annealing the “misunderstood” difference, the motor
adjustable model and fitness function are designed, and the number of iterations is constantly reset
to achieve the effect of online identification. Under different working conditions, simulated and
experimental results show that the proposed method can quickly and accurately identify the four
parameters of the motor’s stator, winding resistance, stator winding d-axis inductance, stator winding
q-axis inductance, and permanent magnet flux linkage at the same time, compared with the traditional
method of parameter identification, and it has better accuracy, rapidity, and robustness.

1. INTRODUCTION

Permanent magnet synchronous motor (PMSM) [1–3] is widely used by virtue of its high efficiency and
high power density. PMSM is divided into interior permanent magnet synchronous motor (IPMSM)
and surface permanent magnet synchronous motor (SPMSM) according to the different installation
positions of permanent magnets of the motor. IPMSM has the advantages of high power density, high
operating efficiency, and low failure rate, and it is widely used in industrial drives, electric vehicles,
and new energy power generation [4–6]. However, IPMSM is a strongly coupled, multivariable, and
non-linear system [7]. The parameters of the motor are easily affected by unpredictable factors. For
example, the changes of temperature and frequency cause the variety of the stator resistance of the
motor, and the d-q axis inductance and permanent magnet flux can be affected by current and magnetic
saturation. These changes of parameters lead to the unsatisfactory effect of vector control and decrease
the reliability of the system. In addition, the parameters setting of the PID controller is related to
the parameters of the motor. When the parameters of the motor change, the parameters of the PID
controller need to be re-tuned; otherwise, the high-precision control requirements will not be met. For
this reason, scholars have proposed two kinds of parameter identification methods for PMSM parameter
identification: offline and online ones [8]. Online parameter identification can meet the needs of real-time
monitoring of motor parameter changes, and it is one of the hotspots of current research. Traditional
online parameter methods mainly include: Extended Kalman filter [9, 10], model reference adaptive
system [11, 12], recursive least squares [13, 14], etc. The authors of [9] and [10] propose an extended
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Kalman filter (EKF) for parameter identification. EKF is suitable for nonlinear time-varying systems
and can handle noise-sensitive problems in parameter identification. However, the selection of Q and
R matrices depends on experience or experiment. Different Q and R matrices make the accuracy of
identification uncertain, and EKF also needs complex matrix operation and accurate mathematical
model. The model reference adaptive system (MRAS) in [11, 12] has good convergence and is easy to
implement, but the design of its adaptive law is complicated. When multiple parameters are required
to be identified at the same time, it is difficult to determine an appropriate adaptive law, and the
selection of initial parameters has a great influence on the identification accuracy. The application of
recursive least squares (RLS) method in [13, 14] has the advantages of simplicity and ease of realization
for motor parameter identification, but RLS needs to process a large amount of data and is prone to data
saturation problems. In addition, the linear parameter model requires derivation during simplification
and approximation, and noise will have a greater impact on the derivation result, which leads to poor
identification accuracy and robustness. When the above methods identify the parameters of the SPMSM,
since the d-axis and q-axis inductance values of the SPMSM are equal, only three parameters, resistance,
flux linkage, and excitation inductance, need to be identified, which is relatively simple to implement.
But when the above methods are applied to the IPMSM with more parameters, the design of the
parameter identification system is more difficult.

In view of the shortcomings of the above parameter identification methods, intelligent optimization
algorithms with the advantages of low objective function requirements and high efficiency are widely
used [15]. At present, scholars mostly use neural network [16, 17], genetic algorithm [18], particle swarm
algorithm [19, 20], etc. In [16, 17], the neural network identification method was used to identify the
resistance and flux linkage parameters of PMSM. The neural network algorithm has high accuracy, but
the speed and stability of parameter identification require appropriate convergence factors. The authors
of [18] proposed genetic algorithm to identify the parameters of IPMSM, and the identification error was
small, but the genetic algorithm is easy to mature early, and the amount of calculation is large. Particle
swarm optimization (PSO) [21] is widely used in motor parameter identification because of its simple
algorithm and fast speed. But the particle movement of PSO is not selective, and the particle still
updates the current position even if the fitness function of the next particle is very poor. The behavior
of PSO leads to its poor local search ability. Simulated annealing (SA) is a kind of thermodynamic
process to simulate the cooling of high temperature metal, which has the ability to jump out of the
local optimum, and SA has low requirements for initial value and good robustness [22]. Therefore,
some scholars combined PSO with SA to propose simulated annealing particle swarm optimization
(SAPSO) [23, 24]. SAPSO improves the local search capability and evolution speed of PSO. At present,
SAPSO has not been applied in the parameter identification of PMSM. This paper proposes for the first
time that SAPSO is applied to identify the parameters of PMSM to improve the parameter identification
performance, but it takes a long time to anneal all particles.

Aiming at the problems of PSO and SAPSO, a fast backfire double anneal particle swarm
optimization (FBDAPSO) algorithm is proposed. FBDAPSO retains the advantages that SAPSO has
better accuracy and robustness than PSO and performs better than SAPSO in terms of evolution speed.

The contributions of the paper are as follows.
(i) First application of SAPSO in PMSM parameter identification for its good robustness advantage

avoids the defect that PSO is easy to fall into local optimum. The simulation and experimental results
show that the parameter identification effect of SAPSO is better than PSO.

(ii) On the basis of SAPSO, a lower initial temperature is used to shorten the time to find the
optimal solution during annealing, but it increases the risk of falling into local extremes. Therefore, the
algorithm adds an improved tempering idea, which performs a rapid temperature recovery annealing
operation on the promising bad solutions to ensure the accuracy.

(iii) Most improved PSO algorithms used the maximum number of iterations as the algorithm
termination condition [25, 26], and the effect of online identification cannot be achieved because only
the parameter values of some points are identified. This paper adopts the method of resetting the number
of iterations to make the algorithm termination condition change with the change of the system running
time, so that it can identify each sampling point and meet the requirements of online identification.

(iv) The results of simulation and RT-LAB hardware-in-the-loop simulations (HILS) show that the
proposed method can quickly and accurately identify the four parameters of motor: stator resistance,
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d-axis inductance, q-axis inductance, and permanent magnet flux linkage.
The rest of this paper is organized as follows. Section 2 introduces the model of PMSM. Section 3

introduces the proposed method. Section 4 designs the parameter identification scheme of FBDAPSO.
Section 5 and Section 6 present the results of simulation and experiment to illustrate the superiority of
FBDAPSO in parameter identification. Finally, Section 7 gives the conclusions.

2. PMSM MODEL

Assuming that there is no core saturation, no armature reaction during the commutation process, no
damping effect, and the magnetic field is sinusoidally distributed. The voltage equation of IPMSM
under the d-q coordinate system is expressed as follows:[
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The flux linkage equation is as follows:[
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where Rs is the stator resistance; ud and uq are the stator voltages of the d-axis and q-axis; id and iq
are the stator currents of the d-axis and q-axis; ψd and ψq are d-axis and q-axis stator flux linkage; Ld

and Lq are the stator inductances of the d-axis and q-axis; ωe is the speed, and ψf is the permanent
magnet flux linkage.

The current equation in the d-q coordinate system is obtained by Eqs. (1) and (2):
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3. FAST BACKFIRE DOUBLE ANNEAL PARTICLE SWARM OPTIMIZATION
ALGORITHM

3.1. Particle Swarm Optimization

The principle of PSO is to search for the optimal solution of a complex problem through the collaboration
of particles. PSO first initializes the particles randomly, and each particle is a solution of the problem.
In the iteration, the particles track the individual optimal solution Pbest and the group optimal
solution Pgbest through the memory function. The particles continuously iteratively share the position
information of the individual and the group, and then the algorithm evaluates the pros and cons of the
current position through the fitness function, so that the particles gradually approach the point with
the smallest fitness value, and finally the algorithm obtains the optimal solution to the problem.

In an n-dimensional space, m particles form a population X = (x1, x2, . . . , xm). The particles
have their own speed and position. The position of the particle i is xi = (xi1, xi2 . . . , xin),
and its speed is vi = (vi1, vi2, . . . , vin). The individual optimal solution of the particle
is Pbest i = (Pbest i1, Pbest i2, . . . , Pbest in), and the population optimal solution is Pgbest =
(Pgbest 1, Pgbest 2, . . . , Pgbest n).

According to the principle of approximating the optimal particle position, the particle xi updates
the velocity and position according to Eq. (4):{

vk+1
in = w ∗ vk
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(
P k
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in
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(
P k
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(4)

where vin is the component of flight velocity vector in n-dimensional of particle i; xin is the component
of position vector in n-dimensional of particle i; Pbest in is the best point found by the particle i in
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the n-dimensional component; Pgbest n is the best point obtained by the particle swarm in the current
n-dimensional component; k is the number of iterations; r1 and r2 are random numbers between 0 and
1; c1 and c2 are acceleration coefficients. The velocity of particles is between [−vmax, vmax], and vmax is
the maximum velocity.

w is the inertia weighting factor, which adopts the method of linearly decreasing weight, and the
expression is as follows:

w = wmax − (wmax − wmin)
k

kmax
(5)

where wmax is the initial inertia weight; wmin is the inertia weight at the maximum number of iterations;
k is the current number of iterations; kmax is the maximum number of iterations.

The basic steps of PSO:
1) Initialize the particle swarm, and set the initial position and velocity randomly.
2) Update the speed and position according to Eq. (4).
3) Calculate the fitness value of the new position. If the fitness value of the new particle is better

than the old particle, set the position of the new particle as the individual optimal solution Pbest;
otherwise, keep the original state.

4) Find the group optimal solution Pgbest according to the individual optimal solution Pbest.
5) After reaching the convergence criterion, output the Pgbest; otherwise, go to 2).

3.2. Simulated Annealing

The core idea of SA is to accept the state of poor fitness with probability. At the temperature T , a new
position j is generated from the current position i. The internal energies of the two positions are Ei

and Ej. If Ej < Ei, the algorithm receives the new position; otherwise, it calculates the probability pij :

pij = e−
Ej−Ei

T (6)

When pij > random (0, 1), the algorithm receives the new position j; on the contrary, it keeps the
original position i, because it accepts the poor point with probability, which can jump out of the local
optimal solution.

Basic steps of SA:
1) Set the initial temperature T1, and randomly generate the initial solution xold.
2) Generate a new solution xnew near the initial solution xold; calculate the difference Δf between

the fitness function f(xnew) and f(xold); and receive the new state xnew according to the probability
min{1, exp(−Δf/T )} > r, where r is a random number in the interval (0, 1).

3) Annealing operation: T = C1T , where C1 is between (0, 1). When the convergence criterion is
reached, the final accepted state is output; otherwise, go to 2).

3.3. Fast Backfire Double Anneal Particle Swarm Optimization Algorithm

SAPSO has absorbed the advantages of PSO and SA, and its accuracy and evolution speed have been
improved, but SAPSO has the problem of redundant iteration.

FBDAPSO adopts double annealing form, which is divided into general annealing and tempering
annealing: the general annealing operation works when the algorithm accepts a new state, and the
selected initial temperature T1 is lower than the conventional one, which will reduce the time to converge
to a high-quality solution, but the risk of falling into a local extreme value will increase; the tempering
annealing operation works when the algorithm receives a promising deteriorating solution, and the
rapid annealing strategy proposed by Ingber is used for the increased temperature T2 to maintain the
probability and accuracy of the algorithm.

The local search of FBDAPSO is more purposeful; its optimization time is shorter; the rapid
tempering double annealing process is convenient to implement; and the complexity of the algorithm
will not be upgraded. The general annealing form is as follows:

T = C1T (7)
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The form of rapid tempering annealing is as follows:
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{
T e
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2T2 e

−Δf
T > randon(0, 1)

(8)

In this model, T is the current temperature; the initial value is the general annealing initial temperature
T1; C1 is the general annealing coefficient; d is the number of times of receiving the difference; T2 and
C2 are the temperature increased by tempering and the rapid annealing coefficient.

The basic steps of FBDSAPSO:
1) Initialize the position and velocity of the particles randomly, and set the initial annealing

temperature and coefficient.
2) Set Pbest of the particle to the current position, and set Pgbest to the position of the best particle

in the particle swarm.
3) If the algorithm convergence criterion is satisfied, go to 11); otherwise, go to the next step.
4) Update the position and velocity of the particles according to Eq. (4).
5) If the fitness difference Δf between the new and old positions is less than 0, and the particle

enters the new position, go to 7); otherwise, go to the next step.
6) Generate a random number r between (0, 1), and if min{1, exp(−Δf/T)} > r, the particle enters

a new position; the temperature rises; T = T + Cd
2T2; the algorithm jumps out of the local optimum;

go to 7); otherwise, keep the original state, and go to 4).
7) If the fitness of the new particle is better than Pbest, Pbest is set to the current position; otherwise,

Pbest remains unchanged.
8) If the fitness of the new particle is better than Pgbest, Pgbest is set to the current position;

otherwise, Pgbest remains unchanged.
9) Decrease temperature according to Eq. (7).
10) Judge whether the algorithm convergence criterion is satisfied. If satisfied, go to 11); otherwise

go to 4).
11) Output Pgbest, and the algorithm operation ends.
In the process of particle optimization, the particle with better fitness is selected; on the contrary,

the particle will not easily give up the difference and go directly to the next position, and instead, it
will make a decision after probabilistic testing.

A lower initial temperature can increase the convergence speed of the algorithm, but it reduces the
probability of probing. When the algorithm receives a promising poor point, the tempering annealing
operation is performed to make up for the probability of trial and ensure the accuracy of the algorithm.

4. REALIZATION OF PARAMETER IDENTIFICATION THROUGH FBDAPSO

4.1. Principle of Parameter Identification

When the structure of the mathematical model of IPMSM is known, the parameter identification of the
motor can be transformed into an optimization problem. The basic idea of parameter identification of
IPMSM based on FBDAPSO is to optimize the error of the output between the reference model and
the adjustable model of motor. The identified parameters of the adjustable motor model continuously
are modified through FBDAPSO, until the maximum number of iterations or accuracy requirements of
the algorithm are reached, and the finally obtained optimal solution is used as the actual parameters of
the motor.

A mathematical model with the same structure and adjustable parameters is designed as follows:
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where R̂s, L̂d, L̂q, and ψ̂f are the adjustable motor parameters to be identified; îd and îq are the currents
of the d-axis and q-axis output by the adjustable model; ωe is the speed.



28 Wen et al.

The first-order forward Euler method is commonly used in engineering for discretization, which is
as follows:

di

dt
=
i(k + 1) − i(k)

Ts
(10)

where Ts is the sampling time; Ts is small enough, and the difference is similar to the differential.
Then the discretization of Eq. (9) is as follows:
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The similarity between the reference model of the motor and the adjustable model needs to be

measured by designing an appropriate fitness function. In order to characterize the pros and cons of
the result of parameter identification, the fitness function is defined as:

f (Rs, Ld, Lq, ψf ) =
1
k

(
id (k) − îd (k)

)2
+

(
iq (k) − îq (k)

)2
(12)

where k is the current number of iterations.
The principle block diagram of identifying the parameters of IPMSM by FBDAPSO is shown in

Fig. 1.
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Figure 1. Principle block diagram of parameter identification.

In Fig. 1, the inputs of the adjustable motor model and the reference model both are d-axis voltage
ud, q-axis voltage uq, and speed ωe. The error of the current output from the reference model and the
adjustable model of the motor is used as the input of the fitness function, and the fitness value of the
particle is obtained from the fitness function.

The FBDAPSO is to continuously screen better parameter values to be identified, so that the error
between reference model and adjustable model tends to 0, or the fitness function value tends to 0. The
smaller the fitness value is, the more accurate the identification value is.

At present, the collected data are first saved in the workplace, and then the algorithm is run to
obtain the motor parameter values. The identification is only the value at a certain sampling point,
which is offline identification [27].

In order to obtain the parameters of IPMSM in real time, the termination condition of the
identification algorithm should be followed by the running time of the system. In this paper, the
proposed algorithm adopts the method of resetting after every 50 iterations to realize the identification
of each sampling point, which can meet the requirements of online identification. The voltage and
current signals of the direct axis and quadrature axis of the motor and speed collected in real time
are used as the input of the parameter identification system, and then the real-time parameters of the
motor are obtained through algorithm iteration.
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4.2. Realization of Parameter Identification

The steps of motor parameter identification are as follows:
1) Given the initial values of the parameters R̂s(k−1), L̂d(k−1), L̂q(k−1) and ψ̂f (k−1) randomly,

and the initial values of the speeds of V · R̂s(k − 1), V · L̂d(k − 1), V · L̂q(k − 1) and V · ψ̂f (k − 1),
set the general annealing temperature T1 and coefficient C1, tempering temperature T2 and annealing
coefficient C2.

2) Collect electrical signals, and obtain the output îd(k−1) and îq(k − 1) of the adjustable model
from Eq. (11).

3) Get the fitness value of the initial parameters:

fk−1 [Rs(k − 1), Ld(k − 1), Lq(k − 1), ψf (k − 1)]=
[
id(k − 1)− îd(k − 1)

]2
+

[
iq(k − 1)− îq(k − 1)

]2
.

(13)
4) Determine the current individual optimal parameter value and group optimal parameter value,

and update the parameter value according to Eq. (4), for example:{
V · R̂s(k) = w ∗ V · R̂s(k − 1) + c1r1

[
R̂pbest − R̂s(k − 1)

]
+ c2r2

[
R̂gbest − R̂s(k − 1)

]
R̂s(k)=R̂s(k − 1) + V · R̂s(k)

(14)

where R̂gbest is the optimal resistance value of the individual; R̂gbest is the optimal resistance value of
the group. In the same way, L̂d(k), L̂q(k), and ψ̂f (k) can be obtained.

5) îd(k) and îq(k) corresponding to the new parameters are obtained by Eq. (11), and then the
corresponding fitness value is calculated.

6) The principle of Metropolis is used to judge whether the new parameter is accepted or not:

Δf = fk − fk−1 (15)

p =
{

1 Δf ≤ 0
e

−Δf
T 7 Δf > 0

(16)

When the fitness deviation Δf is less than 0 or e
−Δf

T greater than a random number between
(0, 1), the algorithm updates to the new parameter value; otherwise, the original parameter value is
maintained.

When the fitness deviation Δf is 0, although the new parameter value is accepted, the fitness
value does not decrease in fact, and this situation occurs many times. In order to avoid the resulting
non-convergence of the algorithm, when Δf = 0, Δf is regarded as a very small number, and it takes
0.001. This change will not affect the accuracy of the algorithm. The new acceptance rule is:

p =

⎧⎨
⎩

1 Δf < 0
e

−0.001
T Δf = 0

e
−Δf

T Δf > 0
. (17)

7) The rapid tempering annealing operation is carried out according to Eq. (8).
8) The general annealing operation is carried out according to Eq. (7), k = k + 1.
9) If the system is over, output the optimal parameters; otherwise, go to 4) to continue iterating.
A reasonable cooling schedule can guarantee the performance of the algorithm. In the early stage,

the probability of accepting the difference should be close to 1. In this paper, the acceptance probability
λ is selected as 0.9999, and the initial temperature is obtained through the formula proposed by Aarts et
al. [28]:

T =
Δf+

ln
m2

m2λ−m1(1 − λ)

(18)

where Δf+ represents the average increment of m2 transformations that make the fitness value increase,
and m1 represents the number of transformations that make the fitness function value smaller.



30 Wen et al.

The average value of random (0, 1) is 0.5, which is equal to exp(−0.69), which shows that the new
state can be adopted when Δf is within 0.69 times of T . When the final fitness deviation is controlled
within 0.01, the cooling coefficient can be obtained according to the initial temperature and the number
of iterations.

5. SIMULATION ANALYSIS

In order to verify the performance of the algorithm, the vector control system of IPMSM is established
in Matlab/Simulink, and the id = 0 current control strategy is adopted in the simulation. Its principle
block diagram is shown in Fig. 2.
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dq
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-
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qL

Figure 2. Vector control system block diagram.

The parameters of motor used in the simulation are shown in Table 1.

Table 1. Motor parameter table.

Parameter Value Unit
Number of pole pairs 4 pairs

Stator resistance 2.875 Ω
D-axis inductance 4.5 mH
Q-axis inductance 13.5 mH

Permanent magnet flux 0.17858 Wb
Rated speed 1200 rpm
Rated torque 20 N · m

For the sake of generality, the initial parameters of the algorithm are all set: the population number
of the particle swarm algorithm is 20; the number of iterations is reset every 50 times, and it is equal
to the running time divided by the sampling time; the acceleration factors c1 and c2 are both set to
1.6, and w linearly decreases from 0.9 to 0.4. SAPSO selects the initial temperature T1 of 1000 and
the annealing coefficient C1 of 0.8; the initial temperatures T1 and T2 of FBDAPSO are 800 and 500,
respectively, and the annealing coefficients C1 and C2 of FBDAPSO are 0.8 and 0.9, respectively. In
addition, two methods, EKF and RLS, are added for comparison.
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The simulation system runs for 0.5 s; the sampling time is 1e-6s; and the initial values of the
parameters to be identified are completely consistent and far away from the actual parameter values.
The actual system will be disturbed by uncertain factors. In order to verify the performance of the
proposed method, we run FBDAPSO, SAPSO, EKF, RLS, and PSO under different working conditions
to independently identify the motor parameters for 5 times, and take their average value as the final
output value.

1) Working condition 1.
The identification results and errors in the operating state with the torque of 10 N ·m and the speed

of 1000 r/min are shown in Table 2.

Table 2. Average result of motor parameter identification under condition 1.

Parameter EKF RLS PSO SAPSO FBDAPSO
Rs(Ω)

Error (%)
Ld (mH)
Error (%)
Lq (mH)
Error (%)
ψf (Wb)
Error (%)

Recognition time (s)
Fitness value

2.76839
−3.70817
4.28985
−4.66988
12.92879
−4.23112
0.17394
−2.59600

0.160
∼

2.75130
−4.30261
4.69609
4.35756
13.4078
−0.68319
0.17451
−2.27909

0.193
∼

2.90530
1.05390
4.59225
2.05010
13.6435
1.06340
0.18208
1.96549
0.176
2.1

2.88690
0.41392
4.52501
0.55588
13.5757
0.56122
0.17915
0.32198
0.116
0.85

2.88541
0.36327
4.52121
0.47227
13.5794
0.58811
0.17930
0.40439
0.094
0.83

The data show that FBDAPSO, SAPSO, EKF, RLS, and PSO can identify motor parameters, and
the identified parameters all converge near the actual values. When the identified parameters tend to be
stable, the error of EKF is 4.66988%, and the identification time is 0.16 s. The error of RLS in 0.193 s is
4.35756%; the identification error of FBDAPSO converges to less than 1% in 0.094 s; its fitness value is
the smallest; SAPSO needs 0.116 s to complete the identification. Therefore, the identification speed of
FBDAPSO is 19% higher than SAPSO. Because PSO is trapped in the local optimum, its identification
error can be approached within 2.5% in 0.176 s. The results prove that FBDAPSO has higher credibility
and speed.

2) Working condition 2.
The identification results and errors in the operating state with the torque of 20 N · m and the

speed of 1200 r/min are shown in Table 3.

Table 3. Average result of motor parameter identification under condition 2.

Parameter EKF RLS PSO SAPSO FBDAPSO
Rs(Ω)

Error (%)
Ld (mH)
Error (%)
Lq (mH)
Error (%)
ψf (Wb)
Error (%)

Recognition time (s)
Fitness value

2.69591
−6.22939
4.28073
−4.72684
12.84220
−4.87256
0.17061
−4.46333

0.211
∼

2.74335
−4.57891
4.70934
4.65214
13.39842
−0.75241
0.17414
−2.48562

0.220
∼

2.96140
3.00590
4.68753
4.16733
13.7207
1.63459
0.18644
4.39868
0.178
4.6

2.89047
0.53821
4.53053
0.67833
13.6063
0.78763
0.17977
0.66797
0.116
1.29

2.88963
0.50876
4.52614
0.58096
13.5958
0.71005
0.17989
0.73388
0.094
1.26



32 Wen et al.

Increasing torque and speed, the identification error of FBDAPSO can be still kept within 1%, and
the convergence speed of FBDAPSO is still about 19% faster than SAPSO, while the identification error
of PSO has exceeded 2.5% and is within 5%. The error of EKF is close to 6.5%, and its convergence
speed becomes slow. The error of RLS also fluctuates, and the convergence speed is slower than before.
The results show that the parameter identification of FBDAPSO has better accuracy, robustness,
and convergence speed. The reason that it is better is that the lower initial temperature improves
the algorithm speed, and the rapid tempering annealing operation guarantees the probability of the
algorithm sudden jump. Even if the fitness function value changes very little, it can jump out of the
local optimum.

The results show that the proposed method retains the advantages of SAPSO and has a better
convergence speed, and even the accuracy of individual parameters has been improved.

6. EXPERIMENTAL VERIFICATION

In order to further verify the correctness of the proposed method, this paper uses RT-LAB to implement
the hardware in the loop simulation (HILS) of the PMSM drive system. The RT-LAB experiment
platform is shown in Fig. 3. The RT-LAB hardware-in-the-loop system configuration diagram of PMSM
is shown in Fig. 4. The model of the DSP controller is TMS320F2812, which runs the algorithm, and
RT-LAB (OP5600) is used to construct other parts of the system such as PMSM and inverter.

DSP

RT-LAB

Scope

Figure 3. RT-LAB experiment platform.

Three-phase 

inverter
DSP Controller PMSM

TMS320F2812

PC

Vdc

Figure 4. RT-LAB hardware-in-the-loop system configuration.
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The parameters of PMSM are shown in Table 1. The display range of the scope is fixed. In the
experiment, in order to better observe the effect of parameter identification, the d-axis inductance,
q-axis inductance, and permanent magnet flux linkage values are enlarged by 1000, 500, and 10 times,
and the fitness value is reduced by 6 times.

1) Working condition 1.
Parameter identification is carried out under the operating state with torque of 10 N·m and rotation

speed of 1000 r/min. The curves of parameter identification and the curves of fitness function are shown
in Figs. 5–7.
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(d) (e)

Figure 5. Identification curve of stator resistance and direct axis inductance under condition 1. (a)
PSO. (b) SAPSO. (c) FBDAPSO. (d) EKF. (e) RLS.

In Fig. 5, the blue and pink curves are the identification curves of the stator resistance and d-
axis inductance, respectively. The purple and green curves represent the actual value curves of the
corresponding parameters. EKF completes the parameters identification of the motor in 0.165 s, and its
identification error is 4.72%; RLS completes the parameters identification of the motor in 0.395 s, and
its identification error is 4.39%; PSO completes the parameters identification of the motor in 0.264 s,
and its identification error is 2.1%; SAPSO completes the parameter identification in 0.208 s, and its
error converges to 0.65%, while FBDAPSO only needs 0.172 s to complete the identification, and its
identification speed is 17.5% ahead of SAPSO.

It can be seen from Fig. 6 that EKF, RLS, PSO, SAPSO, and FBDAPSO can identify quadrature-
axis inductance and permanent magnet flux linkage. The accuracy of SAPSO is close to FBDAPSO,
but the identification speed of FBDAPSO is faster than SAPSO.

The curves of the change of fitness value are shown in Fig. 7. The fitness value of SAPSO converges
to around 1 at 0.208 s, while FBDAPSO only takes about 0.172 s to complete it, so its convergence speed
is 17.5% higher than that of SAPSO. Because PSO is trapped in local optimum, its fitness function
value curve converges to around 2.5 in 0.264 s, and the error fluctuation of PSO is larger.

2) Working condition 2.
Parameter identification is carried out under the operating state with the torque of 20 N · m and
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Figure 6. Identification curve of quadrature axis inductance and permanent magnet flux linkage under
condition 1. (a) PSO. (b) SAPSO. (c) FBDAPSO. (d) EKF. (e) RLS.
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 ˜ 2.5/div ¯
Fitness value of SAPSO

 ˜ 1/div ¯
Fitness value of FBDAPSO
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Figure 7. Fitness function value curve under condition 1. (a) PSO. (b) SAPSO. (c) FBDAPSO.

the speed of 1200 r/min. The curve of parameter identification and the curve of fitness function are
shown in Figs. 8–10.

The identification curves of the stator resistance and the direct-axis inductance of the three
algorithms in a more severe environment are shown in Fig. 8. EKF fluctuates the most, and its error
is 6.9%. RLS also has some fluctuations, and its error becomes 4.96%. The fluctuation of error of the
PSO is significantly increased, and its error becomes 4.7%. The identification curves of SAPSO and
FBDAPSO show good robustness, and their error is kept within 1%, which is 0.82%, but the speed of
parameter identification of FBDAPSO is still 17.5% faster than SAPSO.

The identification curves of quadrature axis inductance and permanent magnet flux linkage of the
five algorithms are shown in Fig. 9. The curves of SAPSO and FBDAPSO are smoother than EKF,
RLS, and PSO, which means that their fluctuations of error are smaller, and it can be seen that the
speed of parameter identification of FBDAPSO is the fastest.
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Figure 8. Identification curve of stator resistance and direct axis inductance under condition 2. (a)
PSO. (b) SAPSO. (c) FBDAPSO. (d) EKF. (e) RLS.
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Figure 9. Identification curve of quadrature axis inductance and permanent magnet flux linkage under
condition 2. (a) PSO. (b) SAPSO. (c) FBDAPSO. (d) EKF. (e) RLS.
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Figure 10. Fitness function value curve under condition 2. (a) PSO. (b) SAPSO. (c) FBDAPSO.

It can be seen from Fig. 10 that the curve of fitness function of PSO fluctuates greatly with the
increase of disturbance, while that of FBDAPSO has less fluctuation, and the convergence speed of
fitness function curve is 17.5% faster than that of SAPSO.

The above analysis shows that the accuracies and speeds of EKF, RLS, and PSO are poor in the
application of parameter identification, and they need to make some improvements. The accuracy of
SAPSO is close to FBDAPSO, but FBDAPSO has better convergence rate. In the case of speed and
load torque changes, FBDAPSO has higher accuracy and robustness, and its identification speed is the
fastest.

The identification speed and accuracy in the experiment are slightly worse than the simulation
results. The main reason is that the noise and electromagnetic interference in the experiment and the
errors caused by connection and transmission will have a certain impact on the accuracy and rapidity
of parameter identification. In practice, electromagnetic interference is directional. Placing two devices
perpendicular to each other can eliminate a lot of electromagnetic interference, then extend the distance
between the devices, and add shielding devices to better eliminate electromagnetic interference.

7. CONCLUSION

Aiming at the problem of poor accuracy of PSO and long time-consuming of SAPSO, a method of motor
parameter identification based on FBDAPSO is proposed. This method injects the randomness of SA
into PSO and overcomes the defect that PSO is easy to fall into local optimality. In order to improve the
evolution speed of the algorithm, the operation of reducing the initial annealing temperature of SAPSO
is adopted, and then it performs fast tempering and annealing operations on the promising inferior
solutions to ensure the accuracy of the algorithm. The algorithm termination condition follows the
system running time to achieve the goal of real-time online identification of parameters. The following
conclusions are drawn through simulations and experiments under different working conditions:

1) The algorithm termination condition changes with the change of the system running time, and
the four parameters, motor resistance, d-axis inductance, q-axis inductance, and permanent magnet
flux, can be identified online in real time.

2) For the first time to apply SAPSO to parameter identification of the PMSM, it has better motor
parameter identification accuracy, evolution speed, and robustness than traditional PSO.

3) On the basis of SAPSO, the proposed FBDAPSO can accurately identify the parameters of the
motor with an error less than 1%; its convergence speed is 17.5% faster than SAPSO; and it retains the
accuracy and robustness of SAPSO.
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