Vol. 103
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-18
A Comprehensive Error Analysis of Free-Space Techniques for Extracting the Permeability and Permittivity of Materials Using Reflection-Only Measurements
By
Progress In Electromagnetics Research M, Vol. 103, 151-159, 2021
Abstract
The electromagnetic characterization of layered materials is applicable to many different applications. In previous work it has been shown that reflection-only techniques - which vary the underlying structure of the sample stack to obtain two independent measurements - are a variation of a single unifying scheme such that there is a single set of closed-form unifying extraction equations for the electric permittivity and magnetic permeability. In this paper, the error propagation method is applied to this single set of closed-form extraction equations in order to derive an accompanying set of closed-form equations to predict the measurement uncertainty of electric permittivity and magnetic permeability. An error analysis is performed on the layer-shift method, and results are compared to a Monte Carlo simulation to prove the viability of the general error analysis equations.
Citation
Raenita A. Fenner, and Mili Shah, "A Comprehensive Error Analysis of Free-Space Techniques for Extracting the Permeability and Permittivity of Materials Using Reflection-Only Measurements," Progress In Electromagnetics Research M, Vol. 103, 151-159, 2021.
doi:10.2528/PIERM21052405
References

1. Valentinuzzi, M. E., J. P. Morucci, and C. J. Felice, "Bioelectrical impedance techniques in medicine. Part II: Monitoring of physiological events by impedance," Critical Reviews in Biomedical Engineering, Vol. 24, No. 4-6, 353-466, 1996.
doi:10.1615/CritRevBiomedEng.v24.i4-6.30

2. Bindu, G. and K. T. Mathew, "Characterization of benign and malignant breast tissues using 2-D microwave tomographic imaging," Microwave and Optical Technology Letters, Vol. 49, 2341-2345, Oct. 2007.

3. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

4. Rosen, A., M. Stuchly, and A. Vander Vorst, "Applications of RF/microwaves in medicine," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 963-974, 2002.
doi:10.1109/22.989979

5. Perret, E., N. Zerounian, S. David, and F. Aniel, "Complex permittivity characterization of benzocyclobutene for terahertz applications," Microelectronic Engineering, Vol. 85, 2276-2281, Nov. 2008.

6. Baba, N., Z. Awang, and D. Ghodgaonkar, "A free-space method for measurement of complex permittivity of silicon wafers at microwave frequencies," Asia-Pacific Conference on Applied Electromagnetics, 2003, APACE 2003, 119-123, 2003.
doi:10.1109/APACE.2003.1234483

7. Trabelsi, S. and S. O. Nelson, "Density-independent functions for on-line microwave moisture meters: A general discussion," Measurement Science and Technology, Vol. 9, 570-578, Apr. 1998.
doi:10.1088/0957-0233/9/4/003

8. Krraoui, H., F. Mejri, and T. Aguili, "Nondestructive measurement of complex permittivity by a microwave technique: Detection of contamination and food quality," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 16, 1638-1657, 2017.
doi:10.1080/09205071.2017.1359114

9. Fagiani, A., M. Vogel, and A. S. Cerqueira, "Material characterization and propagation analysis of mm-waves indoor networks," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 17, No. 4, 628-637, Dec. 2018.
doi:10.1590/2179-10742018v17i41548

10. Degli-Esposti, V., M. Zoli, E. M. Vitucci, F. Fuschini, M. Barbiroli, and J. Chen, "A method for the electromagnetic characterization of construction materials based on Fabry-Pérot resonance," IEEE Access, Vol. 5, 24938-24943, Oct. 2017.

11. Fenner, R. A., E. J. Rothwell, and L. L. Frasch, "A comprehensive analysis of free-space and guided-wave techniques for extracting the permeability and permittivity of materials using reflection-only measurements," Radio Science, Vol. 47, No. 1, 2012.
doi:10.1029/2011RS004755

12. Breiss, H., A. E. Assal, R. Benzerga, A. Sharaiha, A. Jrad, and A. Harmouch, "Ultra-porous and lightweight microwave absorber based on epoxy foam loaded with long carbon fibers," Materials Research Bulletin, Vol. 137, 111188, May 2021.
doi:10.1016/j.materresbull.2020.111188

13. Breiss, H., A. E. Assal, R. Benzerga, C.Méjean, and A. Sharaiha, "Long carbon fibers for microwave absorption: Effect of fiber length on absorption frequency band," Micromachines, Vol. 11, 1-18, Dec. 2020.

14. Assal, A. E., H. Breiss, R. Benzerga, A. Sharaiha, A. Jrad, and A. Harmouch, "Toward an ultrawideband hybrid metamaterial based microwave absorber," Micromachines, Vol. 11, 930, Oct. 2020.

15. Pometcu, L., C. Méjean, R. Benzerga, A. Sharaiha, P. Pouliguen, and C. L. Paven, "On the choice of the dielectric characterization method for foam composite absorber material," Materials Research Bulletin, Vol. 96, 107-114, 2017.
doi:10.1016/j.materresbull.2017.04.055

16. Krraoui, H., C. Tripon-Canseliet, I. Maksimovic, S. Varault, G. Pillet, S. Maci, and J. Chazelas, "Characterization of optically-reconfigurable metasurfaces by a free space microwave bistatic technique," Applied Sciences (Switzerland), Vol. 10, 4353, Jun. 2020.
doi:10.3390/app10124353

17. Fenner, R., E. Rothwell, and L. Frasch, "The dual polarization method for characterization of dielectric materials," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 3, 318-330, 2016.

18. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, Nov. 2004.

19. Kalachev, A., I. Kukolev, S. Matitsin, L. Novogrudskiy, K. Rozanov, A. Sarychev, and A. Seleznev, "The methods of investigation of complex dielectric permittivity of layer polymers containing conductive inclusions," MRS Online Proceedings Library, Vol. 214, 1990.

20. Baker-Jarvis, J., E. Vanzura, and W. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.57336

21. Fenner, R. and E. J. Rothwell, "On the inadequacy of the overlay method for characterizing a conductor-backed material using free-space measurements," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, 2010.

22. Taylor, J. and S. Taylor, Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. ASMSU/Spartans. 4. Spartans Textbook, University Science Books, 1997.