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A Comprehensive Error Analysis of Free-Space Techniques
for Extracting the Permeability and Permittivity of Materials

Using Reflection-Only Measurements
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Abstract—The electromagnetic characterization of layered materials is applicable to many different
applications. In previous work it has been shown that reflection-only techniques — which vary the
underlying structure of the sample stack to obtain two independent measurements — are a variation
of a single unifying scheme such that there is a single set of closed-form unifying extraction equations
for the electric permittivity and magnetic permeability. In this paper, the error propagation method
is applied to this single set of closed-form extraction equations in order to derive an accompanying set
of closed-form equations to predict the measurement uncertainty of electric permittivity and magnetic
permeability. An error analysis is performed on the layer-shift method, and results are compared to a
Monte Carlo simulation to prove the viability of the general error analysis equations.

1. INTRODUCTION

Within the study of electromagnetics, material characterization is the determination of the relative
electric permittivity, εr, and relative magnetic permeability, μr, through free space, waveguide, or probe
measurements. The electromagnetic characterization of materials has many different applications.
In medical applications, the electromagnetic characterization of materials is used for the monitoring
of physiological events in the human body [1], the characterization of benign and malignant breast
tissues [2], breast cancer detection [3], and studying the influence of microwaves on the human body [4].
Within the design of electronic circuits, material characterization has been used to design high-quality
polymers for terahertz components [5] and to perform quality assurance of silicon wafers for integrated
circuit design [6]. In agriculture and quality control of food, material characterization has been used
to determine physical properties (i.e., moisture content, bulk density, and temperature) of cereal grain
and seed [7] and contamination detection in cheddar cheese and beef [8]. Also, material characterization
is vital in propagation analysis of mm-wave indoor networks [9] and characterization of construction
materials [10].

In many material characterization applications, a frequency domain, nonresonant characterization
method is required to extract εr and μr over a range of frequencies. Free-space reflection-only methods
are often highly desired because of their simple measurement setup and the fact that transmission
measurements are not required.

In [11] it was shown that all reflection-only methods that obtain two measurements by adjusting
the stack behind the material under test (MUT) are variations of one single scheme that unifies all such
reflection-only material characterization methods. Moreover, [11] derived a single set of closed-form
extraction equations to extract εr and μr for all reflection-only methods that adjust the stack behind
the MUT.
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The closed-form extraction equations in [11] have been cited in many applications. In [12]
and [13], the extraction equations are used in the fabrication of ultra-porous and lightweight epoxy foam
composites. The extraction equations were used by [14] and [15] to determine the relative permittivity
of fabricated foam composites for microwave absorbers. Similarly, [16] uses the extraction equations to
characterize optically-reconfigurable metasurfaces.

The contribution and novelty of this paper is a set of closed-form equations to perform the error
analysis for all reflection-only methods that adjust the stack behind the MUT; these equations are
termed the general error analysis equations. Based on the wide use of the extraction equations in [11],
the general error analysis equations derived in this paper will be useful to many applications, especially
in the design and fabrication of metamaterials and microwave absorbers.

This paper will first review the closed-form extraction equations for εr and μr from [11]. Next, the
general error analysis equations are n derived and described. Lastly, an error analysis is performed for
the layer-shift method to prove the random propagated error predicted by the general error analysis
equations which is comparable to the random propagated error predicted by a Monte Carlo simulation.

2. REVIEW OF FREE SPACE REFLECTION-ONLY EXTRACTION EQUATIONS

Free space reflection-only techniques necessitate a layered-planar sample illuminated by an incident
field and the reflection coefficient of the sample measured with a vector network analyzer (VNA).
Two independent measurements of the reflection coefficient are required if both εr and μr need to
be determined. Generally, the two independent measurements can be obtained by either altering the
incident field or altering the layered sample stack of the material under test (MUT). An example
technique which alters the incident field is the dual-polarization technique where the reflection coefficient
is measured when the incident field is at parallel polarization and a second time when the incident field
is at perpendicular polarization [17]. Methods which alter the sample stack may vary the position of
the sample within the stack or the composition of the adjacent layers behind the MUT. Examples of
techniques which alter the sample stack include:

• Air/conductor backed method [18] where one measurement is made with the MUT backed by air
and a second measurement when the MUT is backed by conductor.

• Layer-shift method [19] where one measurement is made with the MUT directly adjacent to a
conductor and a second measurement made with the conductor shifted some distance away from
the MUT with a known material sample in between the two.

• Two-thickness method [20] where two measurements are conducted with two different thicknesses
of the MUT which is backed by a conductor in both instances.

Free space reflection-only material characterization techniques are illustrated with a unifying
geometry shown in Figure 1. A transverse magnetic (TM) or transverse electric (TE) incident wave
originates in free space and is initially incident on the overlay region in Region 1. It has been
proven in [21] that methods which manipulate the overlay region will not yield two independent
measurements and thus extract εr and μr. Therefore, it is assumed throughout this work that
Region 1 is free space. The MUT, in Region 2, is assumed to be homogeneous and isotropic with
permittivity ε2r and permeability μ2r. Behind the MUT is the underlay in Region 3 with permittivity
and permeability profiles ε3(z) and μ3(z). The underlay can be one of several configurations including
layered-homogeneous materials, spatially varied layers of materials, etc. Note that to implement
these methods, the measurements should be calibrated so that the phase reference for both reflection
coefficients is at the front face of the MUT.

The free space permittivity and permeability extraction equations in [11] are

ε2r =
kz2η0

k0Z2
μ2r =

k2
z2 + k2

0 sin2 θ0

k2
0ε2r

(1)

for TM waves and

μ2r =
kz2Z2

k0η0
ε2r =

k2
z2 + k2

0 sin2 θ0

k2
0μ2r

(2)
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Figure 1. A general configuration of a layered planar stack including the MUT (Region 2) and adjacent
layers in front and behind the MUT in Region 1 and Region 3. Electrical, magnetic, and dimensional
properties are known for the material layers in Region 1 and Region 3.

for TE waves, where η0 =
√

μ0/ε0 is the intrinsic impedance of free space, and k0 = ω
√

μ0ε0 is the wave
number in free space.

Moreover, Z2 is the wave impedance in Region 2 of Figure 1 and is defined as
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and kz2 is the z-component of the wave vector in Region 2 of Figure 1 and is defined as
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are the wave impedances in Regions 1 and 3, respectively. It is assumed that the properties of Regions 1
and 3 are known, and two measurements of the Fresnel reflection coefficient, Γ0, have been performed.
The two measurements of Γ0 are indicated with superscripts A and B which correspond to the two
unique underlay regions required. Additionally, Z0 is the characteristic impedance of free space and
also the characteristic impedance of Region 1 in Figure 1. For TM polarization Z0 = η0 cos θ0 and for
TE polarization Z0 = η0/cos θ0.

Note that ZA,B
3 in Eq. (6) are left in terms of the general forward and backward travelling waves,

f3(z) = e−jkz3z, g3(z) = ejkz3z, and the z-component of the wave vector in Region 3, kz3, until
the specific configuration of underlays is determined. For instance, in the case of both TM and TE
polarizations, if the underlay is a perfect electric conductor (PEC) then ZA,B

3 = 0. For a homogeneous
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material, ZA,B
3 = Z3. In the case of a homogeneous material which is then terminated by a PEC,

ZA,B
3 = jZ3 tan(kz3(z3 − z)) with z2 ≤ z ≤ z3.

The derivations of Eqs. (1) and (2) are based on the continuity of the transverse impedances in
the MUT and adjacent regions. For the complete derivations of Eqs. (1) and (2), the reader is referred
to [11]. Note that in Eqs. (1,2), ε0 and μ0 are directly substituted because Region 1 is assumed to be
free space as depicted in Figure 1.

3. GENERAL ERROR ANALYSIS EQUATIONS

An error analysis is performed to establish the impact of random error on an experimentally determined
quantity. Random error is inherently present in all measurements and is due to unpredictable
fluctuations in reading of measurement apparatus. To predict the random error propagated into εr

and μr, the standard approach defined by [22] is utilized. Specifically, the random error is defined as
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for εr and
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for μr.
The independent variables are angle, θ, sample thickness, δ, magnitude of the reflection coefficient,

|Γ0|, and phase of the reflection coefficient, ∠Γ0.

3.1. General Error Analysis Equations for TM Polarization

Assume that a TM polarized wave is used as the incident wave to interrogate the sample stack in
Figure 1 and measure the reflection coefficient, Γ0. The extraction of the MUT’s εr and μr is performed
with the equations in Eq. (1). The random propagated error in Eqs. (7) and (8) must be determined
chiefly by finding the first derivatives of εr and μr with respect to θ, δ, |Γ0|, and ∠Γ0. Seeing that εr and
μr in Eq. (1) are closed-form expressions, the first derivatives for Eqs. (7) and (8) will be in closed-form
as well.

First, let x represent any one of the independent variables θ, δ, |Γ0|, or ∠Γ0. By use of the quotient
rule, the first-derivatives of εr and μr with respect to x are
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For simplification, redefine Z2 as
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∂ZA,B
3 /∂x in Eqs. (14) and (15) are left undefined until the specific configuration of the underlay region

(Region 3 in Figure 1) is defined. Now that ∂Z2/∂x has been defined, ∂kz2/∂x must also be defined to
complete the definition of Eqs. (9) and (10). Again for simplicity and clarity, redefine kz2 as
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Thus, a practitioner simply needs to compute ∂Z1/∂x and ∂Z3/∂x for both underlay configurations
A and B to subsequently compute Eqs. (9) and (10).

3.2. General Error Analysis Equations for TE Polarization

The general error analysis equations for a TE incident wave are largely unchanged from the equations
for TM waves in Section 3.1. The first derivatives of ε2r and μ2r are defined as
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The remaining definitions of ∂Z2/∂x, Z22A, ∂kz2/∂x, etc. are the same as defined in Section 3.1.
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3.3. Generic Methodology for the General Error Analysis Equations

A summary of how to use the equations derived in Sections 3.1 and 3.2 to determine σεr and σμr for a
single independent variable is likely useful for practitioners. A general method to use the error analysis
equations derived in Sections 3.1 and 3.2 includes:

(i) Compute the wave impedances ZA
1 , ZB

1 , ZA
3 , and ZB

3 defined in Eqs. (5) and (6) using the measured
reflection coefficients, characteristic impedance, and knowledge of the two underlay configurations.
The user should also compute ∂ZA

1 /∂x and ∂ZB
1 /∂x using Eq. (16), as well as ∂ZA

3 /∂x, and
∂ZB

3 /∂x.
(ii) Next, the practitioner should use ZA

1 , ZB
1 , ZA

3 , and ZB
3 to determine Z2B , Z2C , Z2D, and Z2E

defined in Section 3.1.
(iii) Find ∂Z2B/∂x, ∂Z2C/∂x, ∂Z2D/∂x, and ∂Z2E/∂x in Eqs. (14) and (15) using ZA

1 , ZB
1 , ZA

3 , ZB
3 ,

∂ZA
1 /∂x, ∂ZB

1 /∂x, ∂ZA
3 /∂x, and ∂ZB

3 /∂x.
(iv) Find Z2A, ∂Z2A/∂x, and ∂Z2/∂x using Eqs. (11), (13), and (12), respectively.
(v) Determine φ with Eq. (18), ∂jZ2φ/∂x with Eq. (20), and ∂kz2/∂x with Eq. (19).
(vi) Compute σεr with Eq. (7) and σμr with Eq. (8) using ∂εr/∂x (with Eq. (9) for TM polarization

and Eq. (22) for TE polarization) and ∂μr/∂x (with Eq. (10) for TM polarization and Eq. (21) for
TE polarization).

4. ERROR ANALYSIS OF THE THE LAYER SHIFT METHOD

To prove that the general error analysis equations derived in Sections 3.1 and 3.2 will predict accurate
propagated uncertainty an error analysis has been performed on the layer-shift method. The free space
setup of the layer-shift method is shown in Figure 2. In the layer-shift method ΓA

0 is measured when
the MUT is directly adjacent to a PEC, and ΓB

0 is measured when there is a homogeneous material
of thickness Δ between the MUT and PEC. Additionally, now that the underlay regions have been
specified, ZA,B

3 in Eq. (6) is
ZA

3 = 0 ZB
3 = jZ3 tan(kz3Δ). (23)

as explained in Section 1.

Figure 2. Diagram of the free space implementation of the Layer Shift Method.

In practice after the underlay configuration and ZA
3 and ZB

3 are defined, a practitioner then only
needs to determine ∂ZA,B

3 /∂x and ∂ZA,B
1 /∂x for x = θ, δ, |Γ0|, and ∠Γ0. The equations for the error

analysis are presented in a fashion where all simplifications are accounted.
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4.1. Propagated Uncertainty due to Measured Sample Thickness, δ

The error analysis for random propagated error due on δ is provided here. The error analysis for a
single, independent variable is provided to show how the equations derived in Sections 3.1 and 3.2 are
implemented. A TM wave is assumed for this example.

For uncertainty of sample thickness, x used in Eqs. (9), (10) and (21), (22) is replaced with δ. First
with ZA

3 = 0, it follows that Z2C = ZB
3 and Z2D = 0. Next, the first derivatives of ZA,B

3 are
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3

∂δ
= 0
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3

∂δ
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√

k2
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0 sin2 θ0 has no dependence of δ and that the spacer thickness Δ is considered
to contribute to the uncertainty due to sample thickness. Additionally,
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m /∂δ = 0. Subsequently, ∂Z2B/∂δ = 0 in Eq. (14), ∂Z2E/∂δ = 0

in Eq. (15), and Eq. (13) becomes
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With ZA
3 = 0, it is easiest to write φ in Eq. (18) in terms of Measurement A; therefore, φ = −ZA

1 /Z2
2,

Eq. (20) is simplified to
∂ (jZ2φ)

∂δ
= jφ

∂Z2

∂δ
+

2jZA
1 ∂Z2/∂δ

Z2
2

. (27)

With Eqs. (26) and (27) defined, everything is set to substitute into Eqs. (12) and (19) and then
subsequently into Eqs. (7) and (8).

4.2. Results

A complete error analysis is performed for all of the independent variables in the free space
implementation of the layer-shift method described in [11]. TM polarization is assumed.

The MUT was a sample of magnetic radar absorbing material (MagRAM) consisting of a suspension
of 35% by the volume of BASF EW grade magnetic particles in a commercially available polyurethane
elastomeric resin. A sample sheet of thickness δ = 0.1452 cm and 60.96 cm on a side was placed on top
of an aluminum plate and illuminated using a focus-beam system at an incidence angle of θ0 = 40◦.
The spacer for Measurement B is a Plexiglas sample with Δ = 0.5861 cm and ε3r ≈ 2.66 − j0.0077.

Figure 3. Extracted ε2r and associated standard deviation predicted by the general error analysis
equations and Monte Carlo simulations.
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The error analysis is conducted assuming σθ = 0.5◦, σδ = 0.01 mm, σ|Γ0| = 0.004, and σ∠Γ0 = 0.8◦.
The extraction and error analysis is conducted from 5–12 GHz. The uncertainty predicted from the
general error analysis presented in this paper is compared to uncertainty predicted by Monte Carlo
simulation. At each frequency, 10,000 Monte Carlo trials were run.

Figure 3 shows the results of the extracted ε2r and the associated standard deviation predicted
by the general error analysis and Monte Carlo simulation; the standard deviation predicted by the
general error analysis is indicated simply as σ, while the standard deviation predicted by Monte Carlo
simulation is indicated as σMC .

The extracted ε2r in Figure 3 corresponds greatly to results published in [11] which were also
corroborated with a standard waveguide characterization technique. Simultaneously, ε2r ± σ and
ε2r ± σMC show great agreement across the frequency band.

Figure 4 shows the results of the extracted μ2r and the associated standard deviation predicted by
the general error analysis and Monte Carlo simulation. The extracted μ2r values correspond to those
in [11]. Also, as in the case of ε2r, there is great agreement between μ2r ± σ and μ2r ± σMC .

Figure 4. Extracted μ2r and associated standard deviation predicted by the general error analysis
equations and Monte Carlo simulations.

5. CONCLUSION

The unifying set of closed form extraction equations for ε2r and μ2r in [11] provide a simple means for
analyzing measurement error due to uncertainty in sample thickness, incidence angle, and measured
s-parameters. Closed-form expressions for the sensitivity terms in the error-propagation method are
derived, and uncertainty results predict comparable uncertainty to Monte Carlo simulation. The general
error analysis equations are applicable to all of the techniques obtained by varying the configuration of
the underlay region such as the layer-shift method and air/conductor backed method.
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