1. Weng, G. M., et al. "Layer-by-layer assembly of cross-functional semi-transparent MXene-Carbon nanotubes composite films for next-generation electromagnetic interference shielding," Advanced Functional Materials, Vol. 28, 1803360, 2018.
doi:10.1002/adfm.201803360
2. Liu, J., et al. "Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding," Advanced Materials, Vol. 29, 1702367, 2017.
doi:10.1002/adma.201702367
3. Liu, Y. S., et al. "Ultrasmooth, highly conductive and transparent PEDOT: PSS/silver nanowire composite electrode for flexible organic light-emitting devices," Organic Electronics, Vol. 31, 247, 2016.
doi:10.1016/j.orgel.2016.01.014
4. Bi, Y. G., et al. "Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity," Advanced Materials, Vol. 25, 6969, 2013.
doi:10.1002/adma.201302367
5. Hu, H. T., et al. "A transparent proximity-coupled-fed patch antenna with enhanced bandwidth and filtering response," IEEE Access, Vol. 9, 32774-32780, 2021.
doi:10.1109/ACCESS.2021.3061203
6. Cho, S., et al. "Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens," ACS Nano, Vol. 11, 4347-4357, 2017.
7. Lin, S., et al. "Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows," Advanced Materials, Vol. 29, 1703238, 2017.
doi:10.1002/adma.201703238
8. Shen, Y., et al. "Transparent broadband metamaterial absorber enhanced by water-substrate incorporation," Optics Express, Vol. 26, 15665-15674, 2018.
doi:10.1364/OE.26.015665
9. Wu, Z. C., et al. "Transparent conductive carbon nanotube films," Science, Vol. 305, 1273-1276, 2004.
doi:10.1126/science.1101243
10. Zhang, C., et al. "Broadband metamaterial for optical transparency and microwave absorption," Applied Physics Letters, Vol. 110, 143511, 2017.
doi:10.1063/1.4979543
11. Lv, T. T., et al. "Switchable dual-band to broadband terahertz metamaterials absorber incorporating a VO2 phase transition," Optics Express, Vol. 29, 5437-5447, 2021.
doi:10.1364/OE.418020
12. Wang, H., et al. "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Optics Letters, Vol. 42, 1620, 2017.
doi:10.1364/OL.42.001620
13. Kocifaj, M., et al. "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, 765-769, 2015.
doi:10.1002/andp.201500202
14. Klacka, J., et al. "Optical signatures of electrically charged particles: Fundamental problems and solutions," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 164, 45-53, 2015.
doi:10.1016/j.jqsrt.2015.05.009
15. Dang, M. T., et al. "Recycling Indium Tin Oxide (ITO) electrodes used in thin-film devices with adjacent hole-transport layers of metal oxides," ACS Sustainable Chemistry & Engineering, Vol. 3, 3373-3381, 2015.
doi:10.1021/acssuschemeng.5b01080
16. Cairns, D. R., et al., "Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates," Applied Physics Letter, Vol. 76, 1425-1427, 2000.
doi:10.1063/1.126052
17. Zhang, Y. K., et al. "Solution-processed transparent electrodes for emerging thin-film solar cells," Chemical Reviews, Vol. 120, 2049-2122, 2020.
doi:10.1021/acs.chemrev.9b00483
18. Han, Y., et al., "Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding," Scientific Reports, Vol. 6, 25601, 2016.
doi:10.1038/srep25601
19. Bi, Y. G., et al. "Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices," Advanced Optical Materials, Vol. 7, 1800778, 2019.
doi:10.1002/adom.201800778
20. Lu, Z. G., et al. "Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance," Nanoscale, Vol. 8, 16684-16693, 2016.
doi:10.1039/C6NR02619B
21. Gu, J. H., et al. "Multi-layer silver nanowire/polyethylene terephylene mesh structure for highly efficient transparent electromagnetic interference shielding," Nanotechnology, Vol. 31, 185303, 2020.
doi:10.1088/1361-6528/ab6d9d
22. Zhu, X. Z., et al. "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
doi:10.1039/D0NR03790G
23. Kang, S. B., et al. "Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility," Light: Science & Applications, Vol. 8, 121, 2019.
doi:10.1038/s41377-019-0234-y
24. Chen, S., et al. "Optical waveguides based on one-dimensional organic crystals," PhotoniX, Vol. 2, 2, 2021.
doi:10.1186/s43074-021-00024-2
25. Jiang, Z. P., et al. "Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding," Optics Express, Vol. 27, 24194-24209, 2019.
doi:10.1364/OE.27.024194
26. Phan, D. T., et al. "Optically transparent and very thin structure against Electromagnetic Pulse (EMP) using metal mesh and saltwater for shielding windows," Scientific Reports, Vol. 11, 2603, 2021.
doi:10.1038/s41598-021-80969-3
27. Wang, H. Y., et al. "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Optics Letters, Vol. 42, 1620-1623, 2017.
doi:10.1364/OL.42.001620
28. Ma, L., et al. "Transparent conducting graphene hybrid films to improve Electromagnetic Interference (EMI) shielding performance of graphene," ACS Applied Materials & Interfaces, Vol. 9, 34221-34229, 2017.
doi:10.1021/acsami.7b09372
29. Wen, B., et al. "Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures," Advanced Materials, Vol. 26, 3484-3489, 2014.
doi:10.1002/adma.201400108
30. Zou, X. J., et al. "Imaging based on metalenses," PhotoniX, Vol. 1, 2, 2020.
doi:10.1186/s43074-020-00007-9
31. Han, D. D., et al. "Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers," Advanced Functional Materials, Vol. 25, 4548, 2015.
doi:10.1002/adfm.201501511
32. Han, D. D., et al. "Light mediated manufacture and manipulation of actuators," Advanced Materials, Vol. 28, 8328, 2016.
doi:10.1002/adma.201602211
33. Wang, D., et al. "Determination of formation and ionization energies of charged defects in two-dimensional materials," Physical Review Letters, Vol. 114, 196801, 2015.
doi:10.1103/PhysRevLett.114.196801
34. Liu, Y. Q., et al. "Bioinspired soft robots based on the moisture-responsive graphene oxide," Advanced Science, 2002464, 2021.
doi:10.1002/advs.202002464
35. Zhang, N., et al. "Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness," Science Bulletin, Vol. 64, 540-546, 2019.
doi:10.1016/j.scib.2019.03.028
36. Lee, M. S., et al. "High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures," Nano Letters, Vol. 13, No. 6, 2013.
doi:10.1021/nl401070p
37. Anis, B., et al. "Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction," Optics & Laser Technology, Vol. 103, 367-372, 2018.
doi:10.1016/j.optlastec.2018.01.057
38. Han, Y., et al. "High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding," Carbon, Vol. 115, 34-42, 2017.
doi:10.1016/j.carbon.2016.12.092
39. Xu, S., et al. "Cross-wavelength invisibility integrated with various invisibility tactics," Science Advances, Vol. 6, eabb3755, 2020.
doi:10.1126/sciadv.abb3755
40. Dong, F. Y., et al. "Solar-energy camouflage coating with varying sheet resistance," Nano Energy, Vol. 77, 105095, 2020.
doi:10.1016/j.nanoen.2020.105095
41. Catrysse, P. B., et al. "Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices," Nano Letters, Vol. 10, 2944-2949, 2010.
doi:10.1021/nl1011239
42. Jaroszewski, M., et al. Advanced Materials for Electromagnetic Shielding, John Wiley &Sons, Inc Press, 2019.
43. Chen, X. L., et al. "Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80 000," Advanced Electronic Materials, Vol. 5, 1800991, 2019.
doi:10.1002/aelm.201800991
44. Zhao, J., et al. "An optically transparent metasurface for broadband microwave antireflection," Applied Physics Letters, Vol. 112, 073504, 2018.
doi:10.1063/1.5018017
45. Qin, C. Y., et al. "Electrically controllable laser frequency combs in graphene-fiber microresonators," Light: Science & Applications, Vol. 9, 185, 2020.
doi:10.1038/s41377-020-00419-z
46. Chen, W., et al. "Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding," ACS Nano, Vol. 14, 16643-16653, 2020.
doi:10.1021/acsnano.0c01635
47. Li, C. J., et al. "Highly efficient and reliable transparent electromagnetic interference shielding film," ACS Applied Materials & Interfaces, Vol. 10, 11941-11949, 2018.
48. Cheng, M. J., et al. "High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding," ACS Applied Materials & Interfaces, Vol. 13, 15525-15535, 2021.
49. Zhu, X., et al. "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
doi:10.1039/D0NR03790G
50. Jiang, C., et al. "Shear modulus property characterization of nanorods," Nano Letters, Vol. 13, 111-115, 2013.
doi:10.1021/nl3036542
51. Han, Y., et al. "Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding," Scientific Reports, Vol. 6, 25601, 2016.
doi:10.1038/srep25601