Vol. 170
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-06-03
Optically Transparent Microwave Shielding Hybrid Film Composited by Metal Mesh and Graphene
By
Progress In Electromagnetics Research, Vol. 170, 187-197, 2021
Abstract
Transparent conducting materials with the ability of broadband electromagnetic shielding have a widespread range of applications in aerospace, medical equipment and electronic communications. Achieving enhanced electromagnetic shielding effect without sacrificing much optical transparency is the technical trend in both academia and industries. Here, we experimentally propose a flexible hybrid film constructed by nano-printing based metal meshes and a graphene coating for the transparent electromagnetic shielding application. Numerical analysis is carried out to investigate optimal balance between electromagnetic shielding and optical transparency. In the experiment, enhanced shielding ability of hybrid film is observed without excessively sacrificing optical transmittance, compared to the reference group (the case only with metal mesh). Our work provides a hybrid platform for the high-performance optically transparent shielding materials for electromagnetic environment safety protection.
Citation
Xin-Ran Wang, Xiao-Bai Wang, Hang Ren, Nan-Shu Wu, Jing-Wen Wu, Wen-Ming Su, Yin-Long Han, and Xu Su, "Optically Transparent Microwave Shielding Hybrid Film Composited by Metal Mesh and Graphene," Progress In Electromagnetics Research, Vol. 170, 187-197, 2021.
doi:10.2528/PIER21052101
References

1. Weng, G. M., et al. "Layer-by-layer assembly of cross-functional semi-transparent MXene-Carbon nanotubes composite films for next-generation electromagnetic interference shielding," Advanced Functional Materials, Vol. 28, 1803360, 2018.
doi:10.1002/adfm.201803360

2. Liu, J., et al. "Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding," Advanced Materials, Vol. 29, 1702367, 2017.
doi:10.1002/adma.201702367

3. Liu, Y. S., et al. "Ultrasmooth, highly conductive and transparent PEDOT: PSS/silver nanowire composite electrode for flexible organic light-emitting devices," Organic Electronics, Vol. 31, 247, 2016.
doi:10.1016/j.orgel.2016.01.014

4. Bi, Y. G., et al. "Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity," Advanced Materials, Vol. 25, 6969, 2013.
doi:10.1002/adma.201302367

5. Hu, H. T., et al. "A transparent proximity-coupled-fed patch antenna with enhanced bandwidth and filtering response," IEEE Access, Vol. 9, 32774-32780, 2021.
doi:10.1109/ACCESS.2021.3061203

6. Cho, S., et al. "Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens," ACS Nano, Vol. 11, 4347-4357, 2017.

7. Lin, S., et al. "Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows," Advanced Materials, Vol. 29, 1703238, 2017.
doi:10.1002/adma.201703238

8. Shen, Y., et al. "Transparent broadband metamaterial absorber enhanced by water-substrate incorporation," Optics Express, Vol. 26, 15665-15674, 2018.
doi:10.1364/OE.26.015665

9. Wu, Z. C., et al. "Transparent conductive carbon nanotube films," Science, Vol. 305, 1273-1276, 2004.
doi:10.1126/science.1101243

10. Zhang, C., et al. "Broadband metamaterial for optical transparency and microwave absorption," Applied Physics Letters, Vol. 110, 143511, 2017.
doi:10.1063/1.4979543

11. Lv, T. T., et al. "Switchable dual-band to broadband terahertz metamaterials absorber incorporating a VO2 phase transition," Optics Express, Vol. 29, 5437-5447, 2021.
doi:10.1364/OE.418020

12. Wang, H., et al. "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Optics Letters, Vol. 42, 1620, 2017.
doi:10.1364/OL.42.001620

13. Kocifaj, M., et al. "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, 765-769, 2015.
doi:10.1002/andp.201500202

14. Klacka, J., et al. "Optical signatures of electrically charged particles: Fundamental problems and solutions," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 164, 45-53, 2015.
doi:10.1016/j.jqsrt.2015.05.009

15. Dang, M. T., et al. "Recycling Indium Tin Oxide (ITO) electrodes used in thin-film devices with adjacent hole-transport layers of metal oxides," ACS Sustainable Chemistry & Engineering, Vol. 3, 3373-3381, 2015.
doi:10.1021/acssuschemeng.5b01080

16. Cairns, D. R., et al., "Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates," Applied Physics Letter, Vol. 76, 1425-1427, 2000.
doi:10.1063/1.126052

17. Zhang, Y. K., et al. "Solution-processed transparent electrodes for emerging thin-film solar cells," Chemical Reviews, Vol. 120, 2049-2122, 2020.
doi:10.1021/acs.chemrev.9b00483

18. Han, Y., et al., "Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding," Scientific Reports, Vol. 6, 25601, 2016.
doi:10.1038/srep25601

19. Bi, Y. G., et al. "Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices," Advanced Optical Materials, Vol. 7, 1800778, 2019.
doi:10.1002/adom.201800778

20. Lu, Z. G., et al. "Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance," Nanoscale, Vol. 8, 16684-16693, 2016.
doi:10.1039/C6NR02619B

21. Gu, J. H., et al. "Multi-layer silver nanowire/polyethylene terephylene mesh structure for highly efficient transparent electromagnetic interference shielding," Nanotechnology, Vol. 31, 185303, 2020.
doi:10.1088/1361-6528/ab6d9d

22. Zhu, X. Z., et al. "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
doi:10.1039/D0NR03790G

23. Kang, S. B., et al. "Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility," Light: Science & Applications, Vol. 8, 121, 2019.
doi:10.1038/s41377-019-0234-y

24. Chen, S., et al. "Optical waveguides based on one-dimensional organic crystals," PhotoniX, Vol. 2, 2, 2021.
doi:10.1186/s43074-021-00024-2

25. Jiang, Z. P., et al. "Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding," Optics Express, Vol. 27, 24194-24209, 2019.
doi:10.1364/OE.27.024194

26. Phan, D. T., et al. "Optically transparent and very thin structure against Electromagnetic Pulse (EMP) using metal mesh and saltwater for shielding windows," Scientific Reports, Vol. 11, 2603, 2021.
doi:10.1038/s41598-021-80969-3

27. Wang, H. Y., et al. "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Optics Letters, Vol. 42, 1620-1623, 2017.
doi:10.1364/OL.42.001620

28. Ma, L., et al. "Transparent conducting graphene hybrid films to improve Electromagnetic Interference (EMI) shielding performance of graphene," ACS Applied Materials & Interfaces, Vol. 9, 34221-34229, 2017.
doi:10.1021/acsami.7b09372

29. Wen, B., et al. "Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures," Advanced Materials, Vol. 26, 3484-3489, 2014.
doi:10.1002/adma.201400108

30. Zou, X. J., et al. "Imaging based on metalenses," PhotoniX, Vol. 1, 2, 2020.
doi:10.1186/s43074-020-00007-9

31. Han, D. D., et al. "Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers," Advanced Functional Materials, Vol. 25, 4548, 2015.
doi:10.1002/adfm.201501511

32. Han, D. D., et al. "Light mediated manufacture and manipulation of actuators," Advanced Materials, Vol. 28, 8328, 2016.
doi:10.1002/adma.201602211

33. Wang, D., et al. "Determination of formation and ionization energies of charged defects in two-dimensional materials," Physical Review Letters, Vol. 114, 196801, 2015.
doi:10.1103/PhysRevLett.114.196801

34. Liu, Y. Q., et al. "Bioinspired soft robots based on the moisture-responsive graphene oxide," Advanced Science, 2002464, 2021.
doi:10.1002/advs.202002464

35. Zhang, N., et al. "Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness," Science Bulletin, Vol. 64, 540-546, 2019.
doi:10.1016/j.scib.2019.03.028

36. Lee, M. S., et al. "High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures," Nano Letters, Vol. 13, No. 6, 2013.
doi:10.1021/nl401070p

37. Anis, B., et al. "Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction," Optics & Laser Technology, Vol. 103, 367-372, 2018.
doi:10.1016/j.optlastec.2018.01.057

38. Han, Y., et al. "High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding," Carbon, Vol. 115, 34-42, 2017.
doi:10.1016/j.carbon.2016.12.092

39. Xu, S., et al. "Cross-wavelength invisibility integrated with various invisibility tactics," Science Advances, Vol. 6, eabb3755, 2020.
doi:10.1126/sciadv.abb3755

40. Dong, F. Y., et al. "Solar-energy camouflage coating with varying sheet resistance," Nano Energy, Vol. 77, 105095, 2020.
doi:10.1016/j.nanoen.2020.105095

41. Catrysse, P. B., et al. "Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices," Nano Letters, Vol. 10, 2944-2949, 2010.
doi:10.1021/nl1011239

42. Jaroszewski, M., et al. Advanced Materials for Electromagnetic Shielding, John Wiley &Sons, Inc Press, 2019.

43. Chen, X. L., et al. "Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80 000," Advanced Electronic Materials, Vol. 5, 1800991, 2019.
doi:10.1002/aelm.201800991

44. Zhao, J., et al. "An optically transparent metasurface for broadband microwave antireflection," Applied Physics Letters, Vol. 112, 073504, 2018.
doi:10.1063/1.5018017

45. Qin, C. Y., et al. "Electrically controllable laser frequency combs in graphene-fiber microresonators," Light: Science & Applications, Vol. 9, 185, 2020.
doi:10.1038/s41377-020-00419-z

46. Chen, W., et al. "Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding," ACS Nano, Vol. 14, 16643-16653, 2020.
doi:10.1021/acsnano.0c01635

47. Li, C. J., et al. "Highly efficient and reliable transparent electromagnetic interference shielding film," ACS Applied Materials & Interfaces, Vol. 10, 11941-11949, 2018.

48. Cheng, M. J., et al. "High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding," ACS Applied Materials & Interfaces, Vol. 13, 15525-15535, 2021.

49. Zhu, X., et al. "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
doi:10.1039/D0NR03790G

50. Jiang, C., et al. "Shear modulus property characterization of nanorods," Nano Letters, Vol. 13, 111-115, 2013.
doi:10.1021/nl3036542

51. Han, Y., et al. "Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding," Scientific Reports, Vol. 6, 25601, 2016.
doi:10.1038/srep25601