Vol. 103
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-05
Bandpass Unconditionally Stable CE-BOR-PML Scheme with CNDG Algorithm for Rotational Symmetric Simulation
By
Progress In Electromagnetics Research M, Vol. 103, 81-90, 2021
Abstract
Unconditionally stable approximate Crank-Nicolson (CN) perfectly matched layer (PML) implementation is proposed to treat open region problems for a bandpass rotational symmetric structure. To be more specific, this implementation is based upon the CN Douglas-Gunn (DG) procedure and the complex envelope (CE) method in body of revolution (BOR) finite-difference time-domain (FDTD) lattice. The proposed scheme inherits the advantages of the CNDG procedure, CE method, and BOR-FDTD algorithm which can improve the efficiency, enhance the absorption, and maintain the calculation accuracy. The effectiveness which includes accuracy, efficiency, occupied resources, and absorption is illustrated through a numerical example. The numerical results reveal that the proposed scheme provides considerable accuracy, creditable absorption and outstanding efficiency. Meanwhile, it can also verify that the proposed scheme is stable without the limitation of Courant-Friedrich- Levy (CFL) condition.
Citation
Shihong Wu, Lining Liu, Yunyun Dong, Feng Su, and Xiangguang Chen, "Bandpass Unconditionally Stable CE-BOR-PML Scheme with CNDG Algorithm for Rotational Symmetric Simulation," Progress In Electromagnetics Research M, Vol. 103, 81-90, 2021.
doi:10.2528/PIERM21051401
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

2. Chen, Y., R. Mittra, and P. Harms, "Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441

3. Ramadan, O., "Complex envelope Crank Nicolson PML algorithm for band-limited electromagnetic applications," Electron. Lett., Vol. 42, No. 23, 2006.
doi:10.1049/el:20062511

4. Pursel, J. D. and P. M. Goggans, "A finite-difference time-domain method for solving electromagnetic problems with bandpass-limited sources," IEEE Trans. Antennas Propag., Vol. 47, No. 1, 9-15, 1999.
doi:10.1109/8.752978

5. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

6. Namiki, T., "3-D ADI-FDTD method unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, 2000.
doi:10.1109/22.873904

7. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381

8. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1254, 2004.
doi:10.1049/el:20046040

9. Ogurtsov, S. and G. Pan, "An updated review of general dispersion relation for conditionally and unconditionally stable FDTD algorithms," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2572-2583, 2008.
doi:10.1109/TAP.2008.927569

10. Ju, S., K.-Y. Jung, and H. Kim, "Investigation on the characteristics of the envelope FDTD based on the alternating direction implicit scheme," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 9, 414-416, 2003.
doi:10.1109/LMWC.2003.815696

11. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson scheme for the 2-D finite-difference time-domain method for TEz waves," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2963-2972, 2004.
doi:10.1109/TAP.2004.835142

12. Sun, G. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations," Electron. Lett., Vol. 39, No. 7, 595-597, 2003.
doi:10.1049/el:20030416

13. Shi, X. Y. and X. Y. Jiang, "Implementation of the Crank-Nicolson Douglas-Gunn finite difference time domain with complex frequency-shifted perfectly matched layer for modeling unbounded isotropic dispersive media in two dimensions," Microw. Opt. Technol. Lett., Vol. 62, No. 3, 1103-1111, 2020.
doi:10.1002/mop.32150

14. Sun, G. and C. W. Trueman, "Unconditionally-stable FDTD method based on Crank-Nicolson scheme for solving three-dimensional Maxwell equations," Electron. Lett., Vol. 40, No. 10, 589-590, 2004.
doi:10.1049/el:20040420

15. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, 2006.
doi:10.1109/TMTT.2006.873639

16. Tan, E. L., "Efficient algorithms for Crank-Nicolson-based finite-difference time-domain methods," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 408-413, 2008.
doi:10.1109/TMTT.2007.914641

17. Jiang, H. L., L. T. Wu, X. G. Zhang, et al. "Computationally efficient CN-PML for EM simulations," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 12, 4646-4655, 2019.
doi:10.1109/TMTT.2019.2946160

18. Wu, P., Y. Xie, H. Jiang, and T. Natsuki, "Performance enhanced Crank-Nicolson boundary conditions for EM problems," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1513-1527, 2021.
doi:10.1109/TAP.2020.3016403

19. Jiang, H. L., J. F. Zhang, W. X. Jiang, and T. J. Cui, "Unconditionally stable CN-PML algorithm for frequency-dispersive left-handed materials," IEEE Ante. Wirel. Propag. Lett., Vol. 16, 2006-2009, 2017.
doi:10.1109/LAWP.2017.2692883

20. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-GPU accelerated unconditionally stable Crank," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

21. Rouf, H. K., "Improvement of computational performance of implicit finite difference time domain method," Progress In Electromagnetics Research M, Vol. 43, 1-8, 2015.
doi:10.2528/PIERM15052402

22. Long, S.-Y., W.-J. Chen, Q.-W. Liang, and M. Zhao, "A general ADE-FDTD with Crank-Nicolson scheme for the simulation of dispersive structures," Progress In Electromagnetics Research Letters, Vol. 86, 1-6, 2019.
doi:10.2528/PIERL19040801

23. Fajardo, J. E., J. Galv´an, F. Vericat, C. M. Carlevaro, and R. M. Irastorza, "“Phaseless microwave imaging of dielectric cylinders: An artificial neural networks-based approach," Progress In Electromagnetics Research, Vol. 166, 95-105, 2019.
doi:10.2528/PIER19080610

24. Wu, P. Y., Y. J. Xie, H. L. Jiang, et al. "Unconditionally stable higher order perfectly matched layer applied to terminate anisotropic magnetized plasma," Inter. J. RF Micro. Comp.-Aided Engi., Vol. 33, No. 1, e22011, 2020.

25. Li, J. X. and P. Y. Wu, "Efficient PML implementation based on the unconditionally stable CN-FDTD algorithm for anisotropic magnetized plasma," Optik, Vol. 171, 468-475, 2018.
doi:10.1016/j.ijleo.2018.06.072

26. Chen, H. L. and B. Chen, "Anisotropic-medium PML for ADI-BOR-FDTD method," IEEE Micro. Wirel. Compo. Lett., Vol. 18, No. 4, 221-223, 2008.
doi:10.1109/LMWC.2008.918842

27. Li, J. X., W. Jiao, and X. M. Zhao, "Unconditionally stable CFS-PML based on CNAD-BOR-FDTD for truncating unmagnetized plasma," IEEE Trans. Electro. Compat., Vol. 60, No. 6, 2069-2072, 2018.
doi:10.1109/TEMC.2017.2788421

28. Wu, P. Y., Y. J. Xie, H. L. Jiang, and L. Q. Niu, "Higher-order approximate CN-PML theory for magnetized ferrite simulations," Advan. Theory Simulat., Vol. 3, No. 4, 2020.

29. Mukherjee, B. and D. K. Vishwakarma, "Application of finite difference time domain to calculate the transmission coefficient of an electromagnetic wave impinging perpendicularly on a dielectric interface with modified MUR-I ABC," Defence Science Journal, DRDO, Vol. 62, No. 4, 228-235, 2012.
doi:10.14429/dsj.62.792

30. Mukherjee, B., "Numerical solution in FDTD for absorbing boundary condition over dielectric surfaces," Journal of Advance Research in Scientific Computing, IASR, Vol. 4, No. 1, 13-23, 2012.

31. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Com. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

32. Berenger, J. P., Perfectly Matched Layer (PML) for Computational Electromagnetics, Morgan & Claypool, 2007.

33. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates," Microw. Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304

34. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microw. Guided Wave Lett., Vol. 6, 447-449, 1996.
doi:10.1109/75.544545

35. Ramadan, O., "Unsplit field implicit PML algorithm for complex envelope dispersive LOD-FDTD simulations," Electron. Lett., Vol. 43, No. 5, 2007.
doi:10.1049/el:20073945

36. Chen, J., J. G. Wang, and C. M. Tian, "Using weakly conditionally stable-body of revolution-finite-difference time-domain method to simulate dielectric film-coated circular waveguide," IET Microw. Antennas Propag., Vol. 9, No. 9, 853-860, 2015.
doi:10.1049/iet-map.2014.0441

37. Wu, P. Y., Y. J. Xie, H. L. Jiang, and L. Q. Niu, "Performance-enhanced complex envelope ADI-PML for bandpass EM simulation," IEEE Micro. Wire. Compon. Lett., Vol. 30, No. 8, 729-732, 2020.
doi:10.1109/LMWC.2020.3007454

38. Nakazono, Y. and H. Asai, "Application of relaxation-based technique to ADI-FDTD method and its estimation," 2007 IEEE International Symposium on Circuits and Systems, 1489-1492, 2007.
doi:10.1109/ISCAS.2007.378585

39. Farahat, N., J. Carrion, and L. Morales, "PML termination of conducting media in the finite difference time domain method for Bodies of Revolution (BORs)," Workshop on Computational Electromagnetics in Time-Domain, 2005, CEM-TD 2005, No. 96–99, Atlanta, GA, USA, 2015.

40. Appannagarri, N., et al. "Modeling phased array antennas in Ansoft HFSS," Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No. 00TH8510), 323-326, 2000.
doi:10.1109/PAST.2000.858966

41. Luo, K., S. Ge, L. Zhang, H. Liu, and J. Xing, "“Simulation analysis of ansys HFSS and CST microwave studio for frequency selective surface," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019.

42. Tan, E. L., "Fundamental implicit FDTD schemes for computational electromagnetics and educational mobile apps (Invited review)," Progress In Electromagnetics Research, Vol. 168, 39-59, 2020.
doi:10.2528/PIER20061002

43. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605

44. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 170-177, 2008.
doi:10.1109/TAP.2007.913089

45. Singh, G., E. L. Tan, and Z. N. Chen, "Efficient complex envelope ADI-FDTD method for the analysis of anisotropic photonic crystals," IEEE Photo. Techn. Lett., Vol. 23, No. 12, 801-803, 2011.
doi:10.1109/LPT.2011.2138123

46. Singh, G., E. L. Tan, and Z. N. Chen, "Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method," Opt. Lett., Vol. 36, 1494-1496, 2011.
doi:10.1364/OL.36.001494

47. Heh, D. Y. and E. L. Tan, "Unconditionally stable multiple one-dimensional ADI-FDTD method for coupled transmission lines," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7488-7492, 2018.
doi:10.1109/TAP.2018.2872724

48. Yang, Z. and E. L. Tan, "Efficient 3-D fundamental LOD-FDTD method incorporated with memristor," IEICE Trans. Electronics, Vol. E99-C, Vol. 7, 788-792, 2016.
doi:10.1587/transele.E99.C.788

49. Heh, D. Y. and E. L. Tan, "Some recent developments in fundamental implicit FDTD schemes," Asia-Pacific Symp. Electromag. Compat., 153-156, Singapore, 2012.

50. Yang, Z., E. L. Tan, and D. Y. Heh, "Variants of second-order temporal-accurate 3-D FLODFDTD schemes with three split matrices," IEEE Int. Conf. Comput. Electromagn., 265-267, Guangzhou, 2016.