1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693
2. Chen, Y., R. Mittra, and P. Harms, "Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441
3. Ramadan, O., "Complex envelope Crank Nicolson PML algorithm for band-limited electromagnetic applications," Electron. Lett., Vol. 42, No. 23, 2006.
doi:10.1049/el:20062511
4. Pursel, J. D. and P. M. Goggans, "A finite-difference time-domain method for solving electromagnetic problems with bandpass-limited sources," IEEE Trans. Antennas Propag., Vol. 47, No. 1, 9-15, 1999.
doi:10.1109/8.752978
5. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
6. Namiki, T., "3-D ADI-FDTD method unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, 2000.
doi:10.1109/22.873904
7. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381
8. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1254, 2004.
doi:10.1049/el:20046040
9. Ogurtsov, S. and G. Pan, "An updated review of general dispersion relation for conditionally and unconditionally stable FDTD algorithms," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2572-2583, 2008.
doi:10.1109/TAP.2008.927569
10. Ju, S., K.-Y. Jung, and H. Kim, "Investigation on the characteristics of the envelope FDTD based on the alternating direction implicit scheme," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 9, 414-416, 2003.
doi:10.1109/LMWC.2003.815696
11. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson scheme for the 2-D finite-difference time-domain method for TEz waves," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2963-2972, 2004.
doi:10.1109/TAP.2004.835142
12. Sun, G. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations," Electron. Lett., Vol. 39, No. 7, 595-597, 2003.
doi:10.1049/el:20030416
13. Shi, X. Y. and X. Y. Jiang, "Implementation of the Crank-Nicolson Douglas-Gunn finite difference time domain with complex frequency-shifted perfectly matched layer for modeling unbounded isotropic dispersive media in two dimensions," Microw. Opt. Technol. Lett., Vol. 62, No. 3, 1103-1111, 2020.
doi:10.1002/mop.32150
14. Sun, G. and C. W. Trueman, "Unconditionally-stable FDTD method based on Crank-Nicolson scheme for solving three-dimensional Maxwell equations," Electron. Lett., Vol. 40, No. 10, 589-590, 2004.
doi:10.1049/el:20040420
15. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, 2006.
doi:10.1109/TMTT.2006.873639
16. Tan, E. L., "Efficient algorithms for Crank-Nicolson-based finite-difference time-domain methods," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 408-413, 2008.
doi:10.1109/TMTT.2007.914641
17. Jiang, H. L., L. T. Wu, X. G. Zhang, et al. "Computationally efficient CN-PML for EM simulations," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 12, 4646-4655, 2019.
doi:10.1109/TMTT.2019.2946160
18. Wu, P., Y. Xie, H. Jiang, and T. Natsuki, "Performance enhanced Crank-Nicolson boundary conditions for EM problems," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1513-1527, 2021.
doi:10.1109/TAP.2020.3016403
19. Jiang, H. L., J. F. Zhang, W. X. Jiang, and T. J. Cui, "Unconditionally stable CN-PML algorithm for frequency-dispersive left-handed materials," IEEE Ante. Wirel. Propag. Lett., Vol. 16, 2006-2009, 2017.
doi:10.1109/LAWP.2017.2692883
20. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-GPU accelerated unconditionally stable Crank," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606
21. Rouf, H. K., "Improvement of computational performance of implicit finite difference time domain method," Progress In Electromagnetics Research M, Vol. 43, 1-8, 2015.
doi:10.2528/PIERM15052402
22. Long, S.-Y., W.-J. Chen, Q.-W. Liang, and M. Zhao, "A general ADE-FDTD with Crank-Nicolson scheme for the simulation of dispersive structures," Progress In Electromagnetics Research Letters, Vol. 86, 1-6, 2019.
doi:10.2528/PIERL19040801
23. Fajardo, J. E., J. Galv´an, F. Vericat, C. M. Carlevaro, and R. M. Irastorza, "“Phaseless microwave imaging of dielectric cylinders: An artificial neural networks-based approach," Progress In Electromagnetics Research, Vol. 166, 95-105, 2019.
doi:10.2528/PIER19080610
24. Wu, P. Y., Y. J. Xie, H. L. Jiang, et al. "Unconditionally stable higher order perfectly matched layer applied to terminate anisotropic magnetized plasma," Inter. J. RF Micro. Comp.-Aided Engi., Vol. 33, No. 1, e22011, 2020.
25. Li, J. X. and P. Y. Wu, "Efficient PML implementation based on the unconditionally stable CN-FDTD algorithm for anisotropic magnetized plasma," Optik, Vol. 171, 468-475, 2018.
doi:10.1016/j.ijleo.2018.06.072
26. Chen, H. L. and B. Chen, "Anisotropic-medium PML for ADI-BOR-FDTD method," IEEE Micro. Wirel. Compo. Lett., Vol. 18, No. 4, 221-223, 2008.
doi:10.1109/LMWC.2008.918842
27. Li, J. X., W. Jiao, and X. M. Zhao, "Unconditionally stable CFS-PML based on CNAD-BOR-FDTD for truncating unmagnetized plasma," IEEE Trans. Electro. Compat., Vol. 60, No. 6, 2069-2072, 2018.
doi:10.1109/TEMC.2017.2788421
28. Wu, P. Y., Y. J. Xie, H. L. Jiang, and L. Q. Niu, "Higher-order approximate CN-PML theory for magnetized ferrite simulations," Advan. Theory Simulat., Vol. 3, No. 4, 2020.
29. Mukherjee, B. and D. K. Vishwakarma, "Application of finite difference time domain to calculate the transmission coefficient of an electromagnetic wave impinging perpendicularly on a dielectric interface with modified MUR-I ABC," Defence Science Journal, DRDO, Vol. 62, No. 4, 228-235, 2012.
doi:10.14429/dsj.62.792
30. Mukherjee, B., "Numerical solution in FDTD for absorbing boundary condition over dielectric surfaces," Journal of Advance Research in Scientific Computing, IASR, Vol. 4, No. 1, 13-23, 2012.
31. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Com. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159
32. Berenger, J. P., Perfectly Matched Layer (PML) for Computational Electromagnetics, Morgan & Claypool, 2007.
33. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates," Microw. Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304
34. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microw. Guided Wave Lett., Vol. 6, 447-449, 1996.
doi:10.1109/75.544545
35. Ramadan, O., "Unsplit field implicit PML algorithm for complex envelope dispersive LOD-FDTD simulations," Electron. Lett., Vol. 43, No. 5, 2007.
doi:10.1049/el:20073945
36. Chen, J., J. G. Wang, and C. M. Tian, "Using weakly conditionally stable-body of revolution-finite-difference time-domain method to simulate dielectric film-coated circular waveguide," IET Microw. Antennas Propag., Vol. 9, No. 9, 853-860, 2015.
doi:10.1049/iet-map.2014.0441
37. Wu, P. Y., Y. J. Xie, H. L. Jiang, and L. Q. Niu, "Performance-enhanced complex envelope ADI-PML for bandpass EM simulation," IEEE Micro. Wire. Compon. Lett., Vol. 30, No. 8, 729-732, 2020.
doi:10.1109/LMWC.2020.3007454
38. Nakazono, Y. and H. Asai, "Application of relaxation-based technique to ADI-FDTD method and its estimation," 2007 IEEE International Symposium on Circuits and Systems, 1489-1492, 2007.
doi:10.1109/ISCAS.2007.378585
39. Farahat, N., J. Carrion, and L. Morales, "PML termination of conducting media in the finite difference time domain method for Bodies of Revolution (BORs)," Workshop on Computational Electromagnetics in Time-Domain, 2005, CEM-TD 2005, No. 96–99, Atlanta, GA, USA, 2015.
40. Appannagarri, N., et al. "Modeling phased array antennas in Ansoft HFSS," Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No. 00TH8510), 323-326, 2000.
doi:10.1109/PAST.2000.858966
41. Luo, K., S. Ge, L. Zhang, H. Liu, and J. Xing, "“Simulation analysis of ansys HFSS and CST microwave studio for frequency selective surface," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019.
42. Tan, E. L., "Fundamental implicit FDTD schemes for computational electromagnetics and educational mobile apps (Invited review)," Progress In Electromagnetics Research, Vol. 168, 39-59, 2020.
doi:10.2528/PIER20061002
43. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605
44. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 170-177, 2008.
doi:10.1109/TAP.2007.913089
45. Singh, G., E. L. Tan, and Z. N. Chen, "Efficient complex envelope ADI-FDTD method for the analysis of anisotropic photonic crystals," IEEE Photo. Techn. Lett., Vol. 23, No. 12, 801-803, 2011.
doi:10.1109/LPT.2011.2138123
46. Singh, G., E. L. Tan, and Z. N. Chen, "Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method," Opt. Lett., Vol. 36, 1494-1496, 2011.
doi:10.1364/OL.36.001494
47. Heh, D. Y. and E. L. Tan, "Unconditionally stable multiple one-dimensional ADI-FDTD method for coupled transmission lines," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7488-7492, 2018.
doi:10.1109/TAP.2018.2872724
48. Yang, Z. and E. L. Tan, "Efficient 3-D fundamental LOD-FDTD method incorporated with memristor," IEICE Trans. Electronics, Vol. E99-C, Vol. 7, 788-792, 2016.
doi:10.1587/transele.E99.C.788
49. Heh, D. Y. and E. L. Tan, "Some recent developments in fundamental implicit FDTD schemes," Asia-Pacific Symp. Electromag. Compat., 153-156, Singapore, 2012.
50. Yang, Z., E. L. Tan, and D. Y. Heh, "Variants of second-order temporal-accurate 3-D FLODFDTD schemes with three split matrices," IEEE Int. Conf. Comput. Electromagn., 265-267, Guangzhou, 2016.