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Bandpass Unconditionally Stable CE-BOR-PML Scheme with
CNDG Algorithm for Rotational Symmetric Simulation
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Abstract—Unconditionally stable approximate Crank-Nicolson (CN) perfectly matched layer (PML)
implementation is proposed to treat open region problems for a bandpass rotational symmetric structure.
To be more specific, this implementation is based upon the CN Douglas-Gunn (DG) procedure and the
complex envelope (CE) method in body of revolution (BOR) finite-difference time-domain (FDTD)
lattice. The proposed scheme inherits the advantages of the CNDG procedure, CE method, and BOR-
FDTD algorithm which can improve the efficiency, enhance the absorption, and maintain the calculation
accuracy. The effectiveness which includes accuracy, efficiency, occupied resources, and absorption is
illustrated through a numerical example. The numerical results reveal that the proposed scheme provides
considerable accuracy, creditable absorption, and outstanding efficiency. Meanwhile, it can also verify
that the proposed scheme is stable without the limitation of Courant-Friedrich-Levy (CFL) condition.

1. INTRODUCTION

The finite-difference time-domain (FDTD) algorithm shows its great potential in wide-band simulation
of the rectangular coordinate system. According to the Yee’s grid, hexahedral mesh generation leads
to the decrement of accuracy and efficiency in circular symmetry structures [1]. To alleviate such
condition, body of revolution FDTD is regarded as the most powerful method in the simulation of
circular symmetry structures. According to the BOR-FDTD algorithm, three-dimensional problems can
be projected into two-dimensions resulting in the significant improvement especially in efficiency [2].

By applying the BOR-FDTD algorithm to bandpass problems, time step must be obtained
according to the maximum frequency resulting in unacceptable simulation duration and accuracy [3].
Complex envelope (CE) method is introduced to overcome these drawbacks [4]. According to the
CE method, the time step can be maximized according to the bandwidth of source rather than the
maximum frequency. As a time explicit algorithm, the stability of the BOR-FDTD algorithm is limited
by the Courant-Friedrichs-Levy (CFL) condition [5]. Without the satisfaction of CFL condition, BOR-
FDTD algorithm will become non-convergence resulting in invalid calculation. By employing such an
algorithm to fine structures and multi-scale problems, a large number of time steps must be calculated
resulting in expensive computation. Unconditionally stable algorithms are proposed to remove the CFL
limit. Until now, several prevalent unconditionally stable algorithms have been proposed to efficiently
solve the Maxwell’s equations including the alternating-direction implicit (ADI), locally one-dimensional
(LOD), split-step (SS) algorithms, etc. [6–8]. As can be concluded, the original ADI, LOD, SS schemes
are implemented by the split step procedure. Such condition results in the degeneration of accuracy
and efficiency. As a one-step procedure, original Crank-Nicolson (CN) scheme which can solve the
Maxwell’s equations within a single step has become prevalent than ever before [9]. Compared with the
other original schemes, the original CN scheme shows better efficiency and accuracy. The original CN is

Received 14 May 2021, Accepted 2 June 2021, Scheduled 5 July 2021
* Corresponding author: Shihong Wu (shihongwu@hotmail.co.jp).
1 Department of Electrical and Electronic Engineering, College of Engineering, Yantai Nanshan University, Longkou 265713, China.
2 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.



82 Wu et al.

merely efficient in one-dimension, due to the forming of large sparse matrices in multi-dimensions [10].
In order to avoid the calculation and generation of large sparse matrices, approximate CN scheme is
carried out which shows considerable entire performance in terms of accuracy and efficiency compared
with the original ADI, LOD, and SS schemes. The approximate CN schemes are firstly proposed
in two dimensions including approximate-decoupling (AD) and Douglas-Gunn (DG) schemes [11, 12].
However, approximate CN schemes cannot be directly extended into three dimensions [13]. Several
approximate CN schemes have been developed in three dimensions including cycle-sweep-uniform (CSU),
approximate-factorization-splitting (AFS), and direct splitting (DS) [14, 15]. However, it has been
testified that the CNCSU scheme is conditionally stable [16–18]. Series of investigations have been
developed which are mainly based on the approximate CN schemes [19–25]. As can be concluded,
they are mainly for the rectangular coordinate system. For the rotational symmetric simulation,
several implementations have been carried out including the original ADI and CNAD schemes [26, 27].
Compared with the ADI scheme, approximate CN scheme shows less numerical dispersion error with
larger time steps [11, 12]. The CNDG method is implemented by adding disturbance terms at both sides
of the equations. Such operation results in the decrement of efficiency and increment of accuracy. Thus,
compared with the CNAD scheme, CNDG can be regarded as the compromise between the efficiency
and accuracy [28].

For the simulation of open regions in finite space, the absorbing boundary condition must be
employed to terminate the unbounded lattice [5]. Among several absorbing boundary conditions,
perfectly matched layer (PML) can be regarded as the most popular one [29–31]. The original PML
is a split-field implementation which shows limitation in absorption and efficiency [32]. During the
simulation, six auxiliary variables must be introduced which also indicates the degeneration of entire
performance. To alleviate such condition, the unsplit-field formulation including stretched coordinate
and complex-frequency-shifted (CFS) PMLs are proposed in recent past decades [33, 34]. It has
been testified that the unsplit-field scheme shows its advantages in simplifying the implementation
at corners and edges, absorbing low-frequency evanescent waves and reducing late-time reflections. To
our knowledge, the bandpass form for the BOR-FDTD algorithm has not been investigated [35–37].

Here, by incorporating CE method, CNDG scheme and BOR-FDTD algorithm, unconditionally
stable implementation is proposed for the open region problems in bandpass rotational symmetric
simulation. The scheme is proposed to take full advantage of them in terms of considerable accuracy,
creditable absorption, and outstanding efficiency. The effectiveness and efficiency are demonstrated
through the numerical example.

2. FORMULATION

In the PML region for TMφ wave, the frequency-domain Maxwell’s equations can be given as

−jωμ0Hr = − 1
Sz
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1
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where ε0 and μ0 are the relative permittivity and permeability, respectively. Sη, η = r, ϕ, z is the
stretched coordinate variable with CFS factor which can be defined as

Sη = κη +
ση

αη + jωε0
(2)

where ση and αη are assumed to be positive real, and κη ≥ 1 is real. Within Eq. (1b), r̃ is the complex
spatial coordinate-stretching variable, given as

r̃ = r1 +
∫ r

r1

Sr(r′)dr′ (3)
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where r1 represents the distance between the FDTD lattice and the PML regions in r-direction.
According to the partial fraction method, the multiplicative inverse of Sη can be given as

S−1
η = kη

jω + aη

jω + bη
(4)

where kη = 1/κη , aη = αη/ε0, and bη = aη + aη/κη. By substituting Eq. (4) into Eqs. (1a)–(1c), one
obtains
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To update the equations inside PML regions, the introduction of auxiliary variables is employed,
given as

jωμ0Hr = (jω + az)Gz (6a)

−jωμ0Hz = (jω + ar)Gr +
Eϕ
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jωε0Eϕ = (jω + az)Fz − (jω + ar)Fr (6c)
where auxiliary variables are given as, for example,
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where λr = 1
r · (r1 +
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κr(r′)dr′) and θr = 1
r · ∫ r

r1
σr(r′)dr′. By introducing the CE method, the

bandpass signal can be expressed by the relationship Φ = Re{Φ̂ej�t}, where Re{·} is the real part of
the equation, � the carrier frequency, Φ the broadband signal, and Φ̂ the bandpass complex envelope
signal. By transforming Eqs. (6a)–(6c) and (7a)–(7c) into time domain according to the relationship
jω ↔ ∂t, employing the CE method and CN scheme in the resultants, and substituting Eqs. (7a)–(7c)
into Eqs. (6a)–(6c), the results can be obtained as
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n
z + p1hrĜ

n
r + p2hrδrÊ

n+1
ϕ − p2hr∂rÊ
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n
ϕ + p4hrĜ
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where c1 = (2 − j�Δt)/(2 + j�Δt), c2 = 2 + j�Δt, p1hη = 2Δt(aη − bη)/(c2μ0), p2hη = 2Δtkη/(c2μ0),
p3hη = Δt/(ic2λη), p4hr = 2Δt/c2, p1eη = 2Δt(aη − bη)/(c2ε0), p2eη = 2Δtkη/(c2ε0). The auxiliary
variables can be given as
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where p5η = (2 − j�Δt − bηΔt)/(2 + j�Δt + bηΔt), p6η = 2Δtkη/(2 + j�Δt + bηΔt), p7r̃ =
(2ε0λr − j�Δt − αrΔtλr − θηΔt)/(2ε0λr + j�Δt + αrΔtλr + θrΔt) and p8r̃ = 2θrΔt/[Δrλr(2ε0λr +
j�Δt + αrΔtλr + θrΔt)]. The operator δη is the first-order finite-difference form, for example,
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It can be observed that Eqs. (8a)–(9c) can be updated directly. However, large sparse matrices
are formed at each time step resulting in much expensive calculation. Such a phenomenon becomes
unpractical. In order to avoid the calculation of such matrices and improve the entire efficiency, the
approximate CN scheme is employed which is the CNDG scheme. By substituting Eqs. (8a) and (8b)
into Eq. (8c), one obtains
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where D2η = p2eηp2hηδ2η . By adding the disturbance terms D2rD2zÊ
n+1
ϕ and D2rD2zÊ

n
ϕ at both sides

of the equations, the resultants can be updated by employing sub-steps as

(1 − D2r) w = (c1 + D2r + 2D2z) Ên
ϕ + An (12a)
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ϕ = w − D2zÊ

n
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where w is the temporary variable, and An is the other components at right sides of equations with
the n-th time step. It can be observed that tri-diagonal matrices are formed at left side of Eqs. (12a)
and (12b) which can be solved directly by employing the Thomas algorithm implicitly resulting in the
improvement of entire computational efficiency [38].

3. NUMERICAL RESULTS

For the demonstration of effectiveness which includes the absorption and efficiency of different PML
algorithms, a numerical example is studied. Here, the coaxial transmission line is introduced whose
sketch picture is shown in Fig. 1. As shown in Fig. 1(a), the entire structure is rotationally-symmetric
along z-axis which can be converted to 2-D according to the BOR-FDTD algorithm. Fig. 1(b) shows
the computational domain and its detail parameters.
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Figure 1. The sketch picture of coaxial transmission line. (a) Entire structure. (b) FDTD
computational domain.

The coaxial transmission line is composed of cylinders with materials including polyimide (PI) with
the electric parameters of εr = 3.4 and perfect electric conductor (PEC). The middle of the structure is
PEC cylinder with the radius and height of 0.3 mm and 12 mm, respectively. Two PI cylinder structures
with inner radius, outer radius, and height of 0.3 mm, 0.6 mm, and 1mm are located at 2.5 mm to
3.5 mm, 8.5 mm to 9.5 mm along z-axis, respectively. At the boundary of coaxial transmission line, a
PEC cylinder with the height and thickness of 12 mm and 0.3 mm is employed. It can be observed that
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the structure can be regarded as a rotational symmetric structure. Thus, the structure can be converted
into two dimensions according to the BOR-FDTD algorithm, as shown in Fig. 1(b).

The two-dimensional structure has dimensions of 50Δr×400Δz in r- and z-directions, respectively.
The PEC bulks with the size of 10Δr×400Δz are located at the left and right boundaries. The PI bulks
which have dimensions of 10Δr×34Δz are located at 83 to 117, 283 to 317 of z-direction. The incident
wave which is a modulated Gaussian pulse with the center frequency f0 and maximum frequency of
15 GHz and 20 GHz propagates along positive z-direction. Thus, the percent bandwidth %B can be
calculated as 66.7. The receiver point is located at the left top corner with the distance of one cell from
the side of PML regions to observe the wave propagation and evaluate wave reflections. Because the PML
regions can simulate the infinite extension of the computational domain, the wave reflection generated
by PML regions can be employed to the evaluation of entire performance. For comparison, several
different PML algorithms are carried out in this section. They include the conventional CFS-PML in
BOR-FDTD algorithm (FDTD-PML) in [39], the CFS-PML in original ADI algorithm (ADI-PML)
in [26], the CFS-PML in CNAD algorithm in [27], the uniaxial PML (UPML-HFSS) of HFSS in [40],
the convolutional PML (CST-CPML) of CST in [41], and the Mur absorbing boundary condition (Mur)
in [29]. For clarify illustration, the proposed scheme is denoted as CE-CNDG-PML. Inside the PML
regions, the parameters are selected to obtain the best performance both in time domain and frequency
domain. The parameters of them are selected as κη = 21, αη = 1.1, mη = 2, ση max = 0.4ση opt, where

ση opt = (mη + 1)/(150πΔη) (13)

In the unconditionally stable algorithms, the mesh size can be selected by the accuracy of calculation
rather than the CFL condition. Thus, the mesh size is chosen as Δr = Δz = Δ = 3 × 10−5 m. The
time step of the conventional FDTD algorithm is ΔtFDTD

max = 0.95Δ/(2c0) = 47.5 fs. The time step of
CE method ΔtCE

max can be obtained as 190 fs which can be observed as ΔtCE
max = 4ΔtFDTD

max . The CFL
number is defined as CFLN = Δt/ΔtFDTD

max , where Δt is the time step of the unconditionally stable
FDTD algorithm. Figs. 2(a) and (b) show the waveform at the receiver obtained by different PML
algorithms and CFLNs.

(a) (b)

Figure 2. The waveform obtained by Mur, UPML-HFSS, CST-CPML, FDTD-PML, ADI-PML,
CNAD-PML, CE-CNDG-PML CFLN = 1 and 12, respectively.

Through the result, it can be observed that the envelope can be obtained according to the CE
method. Meanwhile, it can be observed that the waveforms obtained by different algorithms are
overlapped. The waveform obtained by the proposed scheme is overlapped with the upper boundary of
the waveform obtained by the other algorithms. In addition, the waveform with larger CFLNs shows
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less shifting than Mur, UPML-HFSS, CST-CPML, and FDTD-PML. Such a phenomenon indicates that
the proposed scheme can obtain considerable accuracy during the entire time domain simulation. As
demonstrated previously, the performance of different PML algorithms can be demonstrated by the
wave reflection or the wave absorption. The absorption and wave reflections inside PML regions can be
evaluated by the relative reflection error which can be defined as

RdB (t) = 20 log10

[∣∣Et
z (t) − Er

z (t)
∣∣ / |max {Er

z (t)}|] (14)

where Et
z(t) is the test solution which can be directly obtained by different PML algorithms, and Er

z(t) is
the reference solution. The reference solution can be directly obtained by enlarging the computational
domain by 20 times and employing thicker PML regions for the termination with 128 cells without
changing the relative position between the source and receiver. During the calculation of reference
solution, the reflection wave at the receiver can be ignored due to the enlarged domain and thicker
PML regions. Fig. 3 shows the relative reflection error in the time domain obtained by different PML
algorithms and CFLNs.

For clearness, the simulation time of 0.5 ns is shown in Fig. 3. The absorption can be evaluated
by both of the maximum reflection error (MRRE) and late-time reflections. Fig. 3(a) shows the
absorption in the time domain obtained by Mur, UPML-HFSS, CST-CPML, and FDTD-PML. It can
be observed that the Mur absorbing boundary condition shows the worst absorption during the entire
time simulation. Compared with the HFSS-UPML, CPML-CST can obtain considerable absorption
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Figure 3. The relative reflection error in the time domain obtained by (a) Mur, UPML-HFSS, CPML-
CST and FDTD-PML, (b) FDTD-PML, ADI-PML, CNAD-PML, CE-CNDG-PML CFLN = 1, (c)
FDTD-PML, ADI-PML, CNAD-PML, CE-CNDG-PML CFLN = 12.

indicating that the CPML shows better performance than the UPML. The FDTD-PML has the best
performance among these implementations. Fig. 3(b) shows the absorption of FDTD-PML, ADI-PML,
CNAD-PML, and proposed scheme with CFLN = 1. It can be observed that the ADI-PML and CNAD-
PML have inferior absorption to the others, while FDTD-PML and the proposed scheme are the same.
Such condition indicates that the proposed scheme is efficient compared with the ADI-PML and CNAD-
PML. As can be observed from Fig. 3(c), the absorption decreases significantly especially with larger
CFLNs. The reason is that the numerical dispersion increases with larger time steps resulting in such
condition. The computational efficiency and resource are shown in Table 1. It can be observed that the
iteration steps of the unconditionally stable algorithms can be decreased with larger time steps resulting
in the improvement of entire efficiency. It should be noticed that the efficiency of proposed scheme
is better than FDTD-PML. Furthermore, it should be noticed that the ADI scheme for comparison is
based on the original scheme which means that it has very complex operation manipulations. Until now,
many implementations have been proposed to improve the efficiency of the ADI algorithm including the
leapfrog ADI, the fundamental ADI, etc. [42–44]. Within these algorithms, the complex manipulations

Table 1. Comparison of CPU time, iteration steps, memory, reduction and MRRE of different PML
algorithms.

CFLN Iteration Steps Time (s) Memory (MB) Reduction (%)
FDTD-PML 1 65536 79.4 11.7 -

Mur 1 65536 51.3 9.9 35.4
UPML-HFSS 1 65536 85.1 11.8 −7.2
CPML-CST 1 65536 82.6 11.8 −4.0
ADI-PML 1 65536 201.6 13.9 −153.9

CNAD-PML 1 65536 189.0 13.5 −138.0
Proposed 1 16384 52.7 14.2 33.6
ADI-PML 12 5462 19.2 13.9 75.8

CNAD-PML 12 5462 17.1 13.5 78.5
Proposed 12 1366 10.8 14.2 86.4
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can be simplified to make the ADI scheme more efficient. Most specifically, while the ADI-PML method
has not been simplified as compared to the CNDG here, more efficient schemes can be implemented
following References [45–50].

4. CONCLUSION

Here, by incorporating the CE method, CNDG procedure, and BOR-FDTD algorithm, an
unconditionally stable PML scheme is proposed for the termination of unbounded domain in bandpass
simulation. The proposed scheme is to take advantage of them in terms of considerable accuracy,
creditable absorption, and outstanding efficiency. Through the numerical example, it can be
demonstrated that the proposed scheme can obtain outstanding performance. Meanwhile, the proposed
scheme can maintain its stability with the enlargement of CFLNs which indicates that it is an
unconditionally stable implementation.
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